. 00) R290 mo.1253

HYPOLAYR, a Computer Program for Determining Hypocenters of
Local Earthquakes in an Earth Consisting of Uniform Flat
Layers over a Half Space

by

J. P. Eaton

National Center for Earthquake Research
U.S. Geological Survey, Menio Park, California
69-85

OPEN FILE HEFORT

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey conderes and nonemplature.

INDEX

Introduction		1
Geiger least-squares adjustment of the hypocenter (M/Prog)		5
Solution of the normal equations (HYCOR)		12
Miscellaneous computational routines		17
Epicentral distances (M/Prog)		
Cartesian coordinate system		
Selection of special stations		
Calculation of preliminary hypocenter (PREHY)		20
Calculation of traveltimes, derivatives, and angles of		
incidence at the focus (TRVDRV)		26
Plane-wave "substitute" solution (VELAZ)		57
Calculation of Magnitude (MAGNTD)		61
Statistical computations (M/Prog)		70
Restrictions and termination conditions (M/Prog)		71
List of variables	Appendix	73
Description of output	Appendix 2	2 89
Description of input	Appendix :	3 100
Block diagrams	Appendix	4 109
Listing	Appendix	5 117

HYPOLAYR, a Computer Program for Determining Hypocenters of
Local Earthquakes in an Earth Consisting of Uniform Flat
Layers over a Half Space

bγ

J. P. Eaton

National Center for Earthquake Research

U.S. Geological Survey, Menlo Park, California

INTRODUCTION

earthquakes recorded at close range on a dense cluster of seismographs, primarily on the basis of first P-wave arrivals. A first estimate of the hypocenter (from subroutine PREHY) is adjusted by Geiger's method so as to minimize the sum of the squares of the residuals of observed arrival times with respect to those computed from an earth model consisting of flat-lying constant velocity layers (from subroutine TRVDRV). Adjustment (by subroutine HYCOR) is continued until a set of adequacy criteria are met, or until an iteration limit is exceeded. Individual arrivals are weighted in this adjustment according to two factors: quality or clarity of the P-wave arrival, and epicentral distance of the station (for later adjustments). If amplitude, period, and calibration data are available, the program computes two magnitudes for the earthquake, one from the P-phase and the other from the maximum, X, phase (by subroutine MAGNTD).

The program is set up for batch processing of earthquakes.

Station parameters (location, elevation, delay, model), model parameters (depths to boundaries and layer velocities), and control parameters are first read in, and some preliminary calculationsaare carried out.

Data for the first earthquake (arrival times, amplitudes, periods, calibrations) are then read in, and its hypocenter and magnitude are computed and the results printed out. Additional earthquakes are located one at a time until the batch is completed. A variety (or combination) of solution modes (free solution, depth restricted, origin time restricted) can be called by an instruction card that is required to initiate execution of each hypocenter determination.

An optional statistical summary of arrival time and magnitude residuals at individual stations can be called by a control parameter.

HYPOLAYR contains a number of special features that should be noted:

- I. The traveltime and derivatives of the direct refracted wave are computed without recourse to interpolation between tabulated precalculated reference curves; so the earth model can be changed without difficulty. Thus, any earth model consisting of not more than 24 flat-lying constant velocity layers, velocity increasing from layer to layer downward, can be used—it simply is read in along with the station locations, etc., at the time of execution.
- 2. For the specific circumstance in which a group of earthquakes occurs along a known boundary between differing crustal structure provinces (e.g., aftershocks along the San Andreas fauit), two earth models can be read in and individual stations can be assigned to the

model appropriate for the side of the fault on which they lie. Lateral refraction induced by the juxtaposition of the two structures is neglected. This option should be used with caution.

- 3. The program is designed to permit locations to be calculated for events recorded on any number of stations from 3 to 98. If only three stations record the event, the depth or origin time must be specified (depth assigned or origin time computed from S-P data) so that the number of variables does not exceed the number of equations.
- 4. Several solution modes (free, depth restricted, origin time fixed by S-P) can be called by the variable INST on the "execution" card at the end of an event "phase" deck.
- 5. The usual condition under which solutions cannot be obtained (other than due to gross errors) is that in which the epicenter lies far outside of the cluster of seismographs. In this case, the next best estimate of the earthquake's point or origin is calculated: the azimuth to the source and the apparent velocity of the P-wave across the cluster.

HYPOLAYR makes only limited use of S-phase data. Under the "origin-time-restrained" option, the origin time is set equal to that computed from available S-P data. S-wave arrival times are not used along with P-wave data in adjusting the hypocenter.

In this write-up of HYPOLAYR, the mathematical bases of the principal sections of the program will be outlined. Also included are several appendices that will be helpful to anyone wishing to use the program:

I. annotated listing of HYPOLAYR and subroutines.

- 2. block diagrams (simplified flow charts) of HYPOLAYR and subroutines.
- 3. list and definition of variables used in HYPOLAYR and subroutines.
- 4. annotated list and explanation of input parameters and the role they play in the control and use of the program.
- 5. description of the output options, together with a listing of the output "blocks" and an explanation of the variables printed.

Least-Squares Adjustment of an Initial Approximate

Hypocenter by Geiger's Method

Definitions:

 X_0, Y_0, Ξ_0 are the cartesian grid coordinates of the hypocenter,

 t_o is the origin time of the event

 $X_{i}^{*},y_{i}^{*},\Xi_{i}^{*}$ are grid coordinates of station i

is the observed first P-wave arrival time at station i

is the computed traveltime of the first P-wave arrival to station i

is the computed P-wave arrival time at station i

$$F_{i} = \gamma_{i} - \gamma_{i}$$
 is the arrival time anomaly at station i. (2)

is a function of the hypocentral parameters $X_o, Y_o, \Xi_o, + t_o$ and we can express the change in t_i due to small changes in these parameters by a Taylor's expansion

$$dt_i = \frac{\partial t_i}{\partial x_o} dx_o + \frac{\partial t_i}{\partial y_o} dy_o + \frac{\partial t_i}{\partial z_o} dz_o + \frac{\partial t_i}{\partial t_o} dt_o$$
 (3)

If we had only four stations, we could set Fi+dFi=0 (or Fi-dti=0) at each station and calculate dx_0 , dy_0 , dz_0 , and dt_0 which would result in zero anomalies at all stations. With more than four stations such a solution cannot, in general, be found. Rather any adjustment of x_0 , y_0 , z_0 , and t_0 designed to reduce the arrival-time anomalies results in "residuals" at at least some stations.

Thus, we can write for station i, $F_2 + dF_6 = E_6$ or

$$F_{c}-dt_{i}=\Xi_{i} \tag{4}$$

where F_c is the arrival time anomaly we wish to eliminate, dt_c is the change in calculated arrival time resulting from adjustment dx_o , dy_o , dz_o , and dz_o , and E_c is the residual arrival-time anomaly after the adjustment. From (3) and (4), we have

$$\frac{\partial ti}{\partial x_0} \partial x_0 + \frac{\partial ti}{\partial t_0} \partial x_0 + \frac{\partial ti}{\partial t_0} \partial x_0 + \frac{\partial ti}{\partial x_0} \partial x_0$$

Since
$$t:=Ti(X_0,Q_0,Z_0)+to$$

$$\frac{\partial ti}{\partial x_0} = \frac{\partial Ti}{\partial x_0}, \quad \frac{\partial ti}{\partial y_0} = \frac{\partial Ti}{\partial y_0}, \quad \frac{\partial ti}{\partial z_0} = \frac{\partial Ti}{\partial z_0}, \quad \frac{\partial ti}{\partial z_0} = 1$$

Thus

$$\frac{\partial T_i}{\partial x_i} dx_i + \frac{\partial T_i}{\partial y_i} dy_i + \frac{\partial T_i}{\partial z_i} dz_i + dt_i - F_i = -E_i$$
 (6)

For convenience in writing, let

$$\frac{\partial Ti}{\partial x_0} = \alpha i , \frac{\partial Ti}{\partial y_0} = \theta i , \frac{\partial Ti}{\partial z_0} = \gamma i ,$$
 and
$$dx_0 = Y_1 , dy_0 = Y_2 , dz_0 = Y_3 , dt_0 = Y_4$$
Then equation (6) becomes

$$\sim i \gamma_1 + \beta i \gamma_2 + \gamma_i \gamma_3 + \gamma_4 - F_i = -E_i \qquad (7)$$

Following Geiger, let us calculate the adjustments $\frac{1}{2}$ in our overdetermined system so that $\frac{1}{2}$ is a minimum.

To have $\Xi = \frac{1}{2}$ a minimum, we must have

$$\frac{\partial}{\partial Y_{z}} \left[\sum_{i=1}^{N} E_{i}^{2} \right] = 0$$
or
$$\sum_{i=1}^{N} E_{i} \frac{\partial E_{i}}{\partial Y_{z}^{2}} = 0 \quad , \quad z = 1, + \dots$$
(8)

From (7)

$$\frac{\partial E_i}{\partial Y_i} = -\infty; \quad \frac{\partial E_i}{\partial Y_2} = -\beta; \quad \frac{\partial E_i}{\partial Y_3} = -\gamma; \quad \frac{\partial E_i}{\partial Y_3} = -1$$

From equations (8) and (9),

$$\alpha_1 E_1 + \alpha_2 E_2 + \alpha_3 E_3 + \dots + \alpha_n E_n = 0$$
 for $i = 1$, etc. (10)

To assign weights w: to the individual stations we can modify equation (10) to

$$w_1 \propto_1 E_1 + w_2 \propto_2 E_2 + w_3 \propto_3 E_3 + \cdots + w_n \propto_n E_n = 0$$
 (11)
for $j = 1$, etc.

Expanding equation (II), we have (for j = 1)

 $w_1 \propto_1 \propto_1 Y_1 + w_1 \propto_1 \beta_1 Y_2 + w_1 \propto_1 Y_1 Y_3 + w_1 \propto_1 Y_4 - w_1 \propto_1 F_1$ + $w_2 \propto_2 \propto_2 Y_1 + w_2 \propto_2 \beta_2 Y_2 + w_2 \propto_2 Y_2 Y_3 + w_2 \propto_2 Y_4 - w_2 \propto_2 F_2$ + \vdots + $w_1 \propto_n \propto_n Y_1 + w_1 \propto_n \beta_n Y_2 + w_2 \propto_n Y_n Y_3 + w_1 \propto_n Y_4 - w_1 \propto_n F_n$ = 0

Summing columns and employing the summing convention for repeated indices, we can write the foregoing equation for j = 1 (and analogous equations for j = 2, 3, and 4) as follows:

$$3=1 \quad [wixixi] Y_1 + [wixigi] Y_2 + [wixiYi] Y_3 + [wixi] Y_4 - [wixiFi] = 0$$

$$7=2 \quad [wixixi] Y_1 + [wixigi] Y_2 + [wixiYi] Y_3 + [wixiJ] Y_4 - [wixiFi] = 0$$

$$7=3 \quad [wixixi] Y_1 + [wixigi] Y_2 + [wixiYi] Y_3 + [wixiJ] Y_4 - [wixiFi] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wiXIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiGi] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

$$7=4 \quad [wixiJ] Y_1 + [wixiJ] Y_2 + [wixiJ] Y_3 + [wixIJ] Y_4 - [wixiJ] = 0$$

 $A_{11} = [w_{1} \propto i \propto i], A_{12} = [w_{1} \propto i \in i], A_{13} = [w_{2} \propto i \times i], A_{14} = [w_{2} \propto i]$ $A_{21} = [w_{1} \in i \propto i], A_{22} = [w_{1} \in i \in i], A_{23} = [w_{2} \in i \times i], A_{24} = [w_{2} \in i]$ $A_{31} = [w_{1} \times i \times i], A_{32} = [w_{2} \times i \in i], A_{33} = [w_{2} \times i \times i], A_{34} = [w_{1} \times i]$ $A_{41} = [w_{1} \propto i], A_{42} = [w_{2} \in i], A_{43} = [w_{2} \times i], A_{44} = [w_{2} \in i]$ and $B_{1} = [w_{1} \propto i \in i], B_{2} = [w_{1} \in i, F_{1}], B_{3} = [w_{2} \times i, F_{2}], B_{4} = [w_{2} \in F_{1}]$ i = 1, N

Then equations (12) can be written as:

Finally

$$\overline{Y} = \overline{A^{-1}} \overline{B}$$
 (14)

yielding the components of the solution vector $\overline{Y}(Y_1, Y_2, Y_3, Y_4)$ or dx_0 , dx_0 , dx_0 , dx_0 , dx_0

that should result in $\sum E_i^2$ being minimized.

The procedure outlined above is strictly valid only if the corrections are small and if all of the derivatives $(\mathcal{L}_{i}, \mathcal{L}_{i}, \mathcal{L}_{i}, \mathcal{L}_{i})$ are continuous in the region containing the original and corrected hypocenters. In fact, we shall apply the method to a layered medium (hence, one with discontinuities), and we shall initiate the search for a hypocenter from a very approximate first estimate. We shall assume that a single application of the method will yield an improved (if not accurate) hypocenter, and we shall except repeated adjustments to converge on the actual hypocenter. Readjustment will be continued until the average residual, mean deviation of the residuals, and change (from one adjustment to the next) in mean deviation of the residuals all become smaller than prescribed test values, or until the number of iterations exceeds a prescribed limit.

Under certain conditions, the normal equations (13) from which we seek to determine hypocentral adjustments, $\frac{1}{2}$, fail to be linearly independent. One such condition occurs when $\frac{\partial T}{\partial z_o}$ becomes the same (or very nearly the same) at all stations: $\frac{1}{2}$, $\frac{1}{2}$, and $\frac{1}{2}$, and $\frac{1}{2}$, are then linearly dependent. Adjustment can proceed only if $\frac{1}{2}$, or $\frac{1}{2}$, is held constant during the adjustment, causing one variable and one equation in (13) to disappear. Another indeterminate case occurs when the focus is outside of the cluster and the ratio of $\frac{1}{2}$, approaches the same value at all stations. In this case restriction of $\frac{1}{2}$, usually has already been required as per the condition described above, and an adjustment can be computed only if $\frac{1}{2}$, is also specified or its adjustment blocked—leading to further degeneracy of the normal equations.

Normally, Ξ_o is less strongly determined by the data than the other parameters, and its adjustment requires special consideration and control. Therefore, a strategy restricting adjustment of Ξ_o until the epicenter has been fairly well established has been included in the program. Furthermore, the range in values of $\partial T/\partial Z_o$ calculated prior to each adjustment is tested, and adjustment of Ξ_o is blocked if this range is smaller than a prescribed value (i.e., if effective depth control has been lost). Finally, negative focal depths are inadmissable physically; so each computed adjustment to Ξ_o is tested prior to application of the hypocentral adjustments. If the computed adjustment in Ξ_o would result in the focus emerging above the surface, the Ξ_o adjustment is scaled down so that the focus moves only a fraction (6/10) of the distance to the surface, and the other adjustments are

scaled down somewhat less severely (to not less than 4/10 of the computed values).

If the epicenter recedes from the cluster so that the nearest station is farther than a prescribed distance or if the normal equations (even with the automatic restrictions) become indeterminate, the search for a hypocenter is terminated; and the apparent velocity and azimuth of approach of a plane wave that would explain the observed arrivaltime differences across the cluster are calculated as an alternate solution (subroutine VELAZ).

Further restrictions on the adjustment of hypocentral parameters can be called into play by the control variable INST (\pm_o fixed, \pm_o fixed); and even if a free solution is specified(by INST = 0), \pm_o is automatically restricted to reduce the number of normal equations if only three stations are available.

Solution of the Normal Equations for the

Hypocentral Corrections

- 1. Free solution for Y(1), Y(2), Y(3), Y(4): dx_0, dy_0, dz_0, dt_0
- I. Calculate the matrix of cofactors, [C(M,N)], of the matrix of the coefficients of the unknowns in the normal equations, $[A(\tilde{1},J)]$
 - 2. Calculate DETA, the determinant of [A(I,J)]:

$$DETA = A(1,1) * C(1,1) + A(2,1) * C(2,1) + A(3,1) * C(3,1) + A(4,1) * C(4,1)$$

3. Solve for Y(1), Y(2), Y(3), and Y(4) by Cramer's rule:

$$y(I) = (B(I) + C(I,I) + B(2) + C(2,I) + B(3) + C(3,I) + B(4) + C(4,I)) / DET I = I, 4$$

4. Calculate the elements of the principal diagonal of the inverse matrix of coefficients of the normal equation unknowns, [A(I,J)]:

$$A(I,I) = C(I,I) / DETA I = 1,4$$

These elements are needed in the evaluation of the errors in the computed corrections, Y(I).

11. Restricted solution: y(3) = 0 $(d \neq 0)$. This restriction eliminates one of the normal equations and amounts to striking out all quantities in equation (13) that have "3" in the subscript.

For convenience, define auxiliary variables to simplify the expressions for the solution of the 3x3 normal equations:

$$A11 = A(2,2) + A(3,4) - A(4,2) + A(2,4)$$

$$A12 = A(3,1) + A(2,4) - A(2,1) + A(3,4)$$

$$A14 = A(2,1) + A(3,1) - A(3,1) + A(3,4)$$

$$A21 = A(4,2) + A(4,1) - A(3,2) + A(4,4)$$

$$A22 = A(3,1) + A(4,4) - A(3,1) + A(3,4)$$

$$A24 = A(3,1) + A(3,4) - A(3,1) + A(4,1)$$

$$A41 = A(3,2) + A(3,4) - A(3,2) + A(4,1)$$

$$A42 = A(2,1) + A(3,4) - A(3,1) + A(3,1)$$

$$A44 = A(3,1) + A(2,1) + A(3,1) + A(4,1) + A(4,1) + A(4,1)$$

$$DETA = A(3,1) + A(1,1) + A(2,1) + A(4,1) + A(4,1) + A(4,1)$$

Then, solving the 3x3 normal equations for the corrections Y(T),

$$Y(1) = (B(1) * A11 + B(2) * A21 + B(4) * A41) / DETA$$

 $Y(2) = (B(1) * A12 + B(2) * A22 + B(4) * A42) / DETA,$
 $Y(3) = O$
 $Y(4) = (B(1) * A14 + B(2) * A24 + B(4) * A44) / DETA$

The moduli of the elements of the principal diagonal of the inverse matrix of coefficients of normal equation unknowns can be written: ASDX = |AII/DETA| ASDY = |A22/DETA|

ASDZ = 1, by arbitrary desimition ASDT = A44 / DETA III. Restricted solution: $Y(H) = O(dto^2)$. This restriction eliminates one of the normal equations and amounts to striking out all quantities in equation (13) that have "4" in the subscript.

For convenience, define auxiliary variables to simplify the expressions for the solution of the 3x3 normal equations:

$$A11 = A(2,2) * A(3,3) - A(3,2) * A(2,3)$$
 $A12 = A(3,1) * A(2,3) - A(2,1) * A(3,3)$
 $A13 = A(2,1) * A(3,2) - A(3,1) * A(2,2)$
 $A21 = A(3,2) * A(1,3) - A(1,2) * A(3,3)$
 $A22 = A(1,1) * A(3,3) - A(3,1) * A(1,3)$
 $A23 = A(3,1) * A(1,2) - A(1,1) * A(3,2)$
 $A31 = A(1,2) * A(2,3) - A(2,2) * A(1,3)$
 $A32 = A(2,1) * A(1,3) - A(1,1) * A(2,3)$
 $A33 = A(1,1) * A(2,2) - A(2,1) * A(1,2)$
 $A31 = A(1,1) * A(2,2) - A(2,1) * A(1,2)$

Then, solving the 3x3 normal equations for the corrections (1);

$$Y(1) = (B(1) * A11 + B(2) * A21 + B(3) * A31) / DETA$$

 $Y(2) = (B(1) * A12 + B(2) * A22 + B(3) * A32) / DETA$
 $Y(3) = (B(1) * A13 + B(2) * A23 + B(3) * A33) / DETA$
 $Y(4) = 0$

The moduli of the elements of the principal diagonal of the inverse matrix of coefficients of the normal equation unknowns can be written:

IV. Restricted solution: Y(3) = 0, Y(4) = 0. These restrictions eliminate two of the normal equations and strike out all quantities in equation (13) that have "3" or "4" in the subscript.

Solving the 2x2 normal equations for the corrections Y(I), Y(I) = (B(I) * A(2,2) - B(2) * A(1,2)) / DETA Y(2) = (A(1,1) * B(2) - A(2,1) * B(1)) / DETA $Y(3) = 0 \quad \text{and} \quad Y(4) = 0 \quad \text{where}$ DETA = A(1,1) * A(2,2) - A(2,1) * A(1,2)

The moduli of the principal diagonals of the inverse matrix of the matrix of coefficients of normal equation unknowns can be written:

ASDX =
$$|A(2,2)|/DETA|$$

ASDY = $|-A(1,1)|/DETA|$
ASDZ = $|I:O|$, for convenience.
ASDT = $|I:O|$, for convenience.

Miscellaneous Computational Routines Calculation of Epicentral Distances

Richter's method for calculating short distances is used to determine epicentral distances (in km). Let \mathcal{Q}_0 , λ_0 and $\mathcal{Q}_{\mathcal{C}}$, $\lambda_{\mathcal{C}}$ be latitude (N) and longitude (W) of the epicenter and station i, respectively. Let \mathcal{Q}_0 be the number of kilometers per minute of latitude and \mathcal{PP} be the number of kilometers per minute of longitude at latitude $(\mathcal{Q}_0 + \mathcal{Q}_{\mathcal{C}})/2$. Then the distance of station i from the epicenter is approximately:

$$\Delta i = \sqrt{\left[60.0 * PP * (\lambda_i - \lambda_o)\right]^2 + \left[60.0 * QQ * (Qi - Qo)\right]^2}$$

where $\lambda i, \lambda_o, Q_i, +Q_o$ are in degrees and Δi is in kilometers. $Q = Q = Q_i + Q_o$ and $Q = Q_i + Q_o$ vary only slowly with latitude; so appropriate values of $Q = Q_i + Q_o$ (obtained from Richter's "Elementary Seismology") for the location of the seismograph network are read in as parameters.

The azimuth of station i from the epicenter can be obtained from the equation:

$$tan AZ_i = \frac{PP \times (\lambda_i - \lambda_o)}{QQ \times (Q_i - Q_o)}$$

The proper range of the argument $AZ_{\mathcal{E}}$ (between 0 and 360°) can be ascertained by considering the signs of the numerator and denominator in the foregoing equation.

Calculation of Km-Grid Coordinates

In subroutines PREHY and VELAZ it is convenient to express the locations of stations (and preliminary hypocenter in PREHY) in cartesian

coordinates. For this purpose portions of the Richter short-distance calculations are used. The km-grid coordinates of station i are:

$$XH_i = 60.0 * PH * (\lambda i - \lambda r)$$
 km west of $Qr, \lambda r$
 $YH_i = 60.0 * QQ * (Qi - Qo)$ km north of $Qr, \lambda r$

where Q_T , χ_T are coordinates of an arbitrary point in the region of the network chosen as a "reducing" latitude and longitude and $PH=PPP+CosQ_{near}$

 ϕ_{near} is the latitude of the earliest station.

The azimuth of station i from the earliest station (station "near") can be obtained from

$$tan \Theta_i = \frac{XH_i - XH_{near}}{YH_i - YH_{near}}$$

where the appropriate interval for $\Theta_{\mathcal{C}}$ (between) and 360°) can be deduced from the signs of the numerator and denominator.

Selection of Special Stations for Initial Estimate of Hypocenter or "Plane-Wave" Solution

Both the main program and the VELAZ subroutine require an initial approximate solution from which to proceed by successive adjustments to a final solution. If the initial estimate is very poor, the adjustment routines are prone to fail; so it is desirable to obtain reliable first estimates. Because the methods used to calculate these estimates involve exact solutions for only three or four stations (with an oversimplified model in PREHY), success depends on a good choice of this limited set of stations.

Some of the elements affecting the selection of stations are:

- 1. Early stations tend to have clearer, more certain, arrivals than late (more distant) ones.
- 2. Computations based on stations clustered too closely together or lying along or near a straight line tend to be strongly affected by small errors in arrival time.

The procedure actually employed is as follows:

- I. The stations with P-wave arrival weights greater than 0.3 are ordered in terms of increasing arrival time from the first to the KOLT'th. KOLT is a parameter on the input list.
- 2. The stations lying farthest toward the right and farthest toward the left of the line joining the first and the KOLT'th station 'are identified.
- 3a. In PREHY the first, KOLT'th, and the two stations identified under 2 above are the stations selected for the determination of the preliminary hypocenter. If only three stations are available, they are the ones that are used.
- 3b. In VELAZ the first, KOLT'th, and the station farthest from the line (under 2 above) are selected as the three stations for the calculation of the initial plane-wave solution.

Calculation of the Preliminary Hypocenter

(Subroutine PREHY)

Our earth model will consist of a uniform half space with constant P-wave velocity V. A km-grid-cartesian coordinate system will be used to specify position. Hypocentral parameters are \times_0 , y_0 , z_0 , the location, and t_0 , the origin time. Station parameters are \times_i , y_i , z_i , the location; and P_i , S_i , and $(s-P)_i$, the P- and S-wave arrival times and the S-P interval; T_i (= P_i - t_0), the P traveltime; and \mathcal{D}_i , the hypocentral distance.

Our fundamental equation (Pythagoras) is $\mathcal{T}_{i} * V = \mathcal{D}_{i}$ We shall consider three cases as follows:

a. Four stations available.

Eliminate Z_s by differencing station equations pair by pair and noting that $Z_s - Z_i \approx 0$. Solve the resulting three equations for X_0, y_0 , and t_0 . Substitute X_0, y_0 , and t_0 in the "near" station equation and solve for Z_0 . If Z_0 is less than 1/2 the epicentral distance of the near station, set $Z_0 = ZTR$.

b. Three stations, with at least one measured S-P interval available.

Eliminate \mathbb{Z}_o by differencing the three equations pair by pair and solve the resulting two equations for \times_o and \mathcal{Y}_o in terms of \mathcal{T}_1 the P-wave traveltime to station 1 (the nearest station). Compute the origin time from available S-P data:

$$t_0 = \frac{1}{N} \sum_{i=1}^{N} [P_i - 1.37 (s-P)_i]$$
, whence $T_i = P_i - t_0$.

Substitute T_i into the equations for X_i and Y_i (in terms of T_i) to evaluate X_i and Y_i . Set $X_i = ZTR$.

c. Three stations, without S-P data to establish $t_{
m o}$.

Proceed as under b to evaluate X_o and Y_o in terms of T_i . Substitute $X_o(T_i)$ and $Y_o(T_i)$ and $Z_o = ZTR$ into the original station I equation and solve the resulting quadratic for T_i . Substitute the two roots, successively, into the quadratic and select the one that satisfies it. If the "residual" $(AT_i^2 + BT_i + C)$ is less than 0.001, use that root for T_i . If not, transfer to the routine that places the hypocenter at the earliest station.

a. Four stations.

The fundamental equations for station I through 4 are

$$(x_1-x_0)^2 + (y_1-y_0)^2 + (z_1-z_0)^2 = V^2(P_1-t_0)^2$$

$$(X_2-X_0)^2+(y_2-y_0)^2+(z_2-z_0)^2=V^2(P_2-t_0)^2$$

3
$$(X_3-X_0)^2+(y_3-y_0)^2+(z_3-z_0)^2=V^2(P_3-t_0)^2$$

4
$$(X_{4}-X_{0})^{2}+(y_{4}-y_{0})^{2}+(z_{4}-z_{0})^{2}=V^{2}(P_{4}-z_{0})^{2}$$

By definition $t_0 = P_1 - T_1$. It is easy to show that

$$(P_2-t_0)^2-(P_1-t_0)^2=2T_1(P_2-P_1)+(P_2-P_1)^2$$

$$(P_3-t_0)^2-(P_1-t_0)^2=2T_1(P_3-P_1)+(P_3-P_1)^2$$

$$(P_4-t_0)^2-(P_1-t_0)^2=2T_1(P_4-P_1)+(P_4-P_1)^2$$

For simplicity, let

Subtracting equation (i) from equations (2), (3), and (4), we have

 $2(X_{2}-X_{1})X_{0}+2(y_{2}-y_{1})y_{0}+2(z_{2}-z_{1})z_{0}=\gamma_{2}^{2}-\gamma_{1}^{2}-V^{2}[2T_{1}(P_{2}-P_{1})+(P_{2}-P_{1})^{2}]$ $2(X_{3}-X_{1})X_{0}+2(y_{3}-y_{1})y_{0}+2(z_{3}-z_{1})z_{0}=\gamma_{3}^{2}-\gamma_{1}^{2}-V^{2}[2T_{1}(P_{3}-P_{1})+(P_{3}-P_{1})^{2}]$ $2(X_{4}-X_{1})X_{0}+2(y_{4}-y_{1})y_{0}+2(z_{4}-z_{1})z_{0}=\gamma_{4}^{2}-\gamma_{1}^{2}-V^{2}[2T_{1}(P_{4}-P_{1})+(P_{4}-P_{1})^{2}]$

Since $Z_2-Z_1\approx 0$, $Z_3-Z_1\approx 0$, $+Z_4-Z_1\approx 0$, the terms in Z_5 can be neglected.

Thus,

Set

$$\begin{aligned} &a_{11} = (X_{2} - X_{1}), a_{12} = (Y_{2} - Y_{1}), a_{13} = (P_{2} - P_{1})V^{2}, b_{1} = \frac{1}{2} \left[r_{2}^{2} - r_{1}^{2} - V^{2}(P_{2} - P_{1})^{2} \right] \\ &a_{24} = (X_{3} - X_{1}), a_{22} = (Y_{3} - Y_{1}), a_{23} = (P_{3} - P_{1})V^{2}, b_{2} = \frac{1}{2} \left[r_{3}^{2} - r_{1}^{2} - V^{2}(P_{3} - P_{1})^{2} \right] \\ &a_{31} = (X_{4} - X_{1}), a_{32} = (Y_{4} - Y_{1}), a_{33} = (P_{4} - P_{1})V^{2}, b_{3} = \frac{1}{2} \left[r_{4}^{2} - r_{1}^{2} - V^{2}(P_{4} - P_{1})^{2} \right] \end{aligned}$$

Finally,

$$a_{11} \times o + a_{12} y_0 + a_{13} T_1 = b_1$$

 $a_{21} \times o + a_{22} y_0 + a_{23} T_1 = b_2$
 $a_{31} \times o + a_{32} y_0 + a_{33} T_1 = b_3$

Solve for X_0 , Y_0 , T_i by Cramer's rule. Then $t_0 = P_i - T_i$ Substitute X_0 , Y_0 , T_i into the station I equation

$$Z_0 \approx \sqrt{\sqrt{2} T_1^2 - (x_1 - x_0)^2 - (y_1 - y_0)^2}$$

If Z_o so computed is imaginary or if it is less than half the epicentral distance of the nearest station, set $Z_o = ZTR$.

b. Three stations.

$$(x_2-x_1)x_0+(y_2-y_1)y_0+(P_2-P_1)v^2T_1=\frac{1}{2}[r_2^2-r_1^2-v^2(P_2-P_1)^2]$$

 $(x_3-x_1)x_0+(y_3-y_1)y_0+(P_3-P_1)v^2T_1=\frac{1}{2}[r_3^2-r_1^2-v^2(P_3-P_1)^2]$

Solve these equations for x_0 and y_0 in terms of \mathcal{T}_i , and set

$$RP2 = \frac{1}{2} \left[r_{2}^{2} - r_{1}^{2} - \sqrt{2} (P_{2} - P_{1})^{2} \right]$$

$$RP3 = \frac{1}{2} \left[r_{3}^{2} - r_{1}^{2} - \sqrt{2} (P_{3} - P_{1})^{2} \right]$$

$$DET3 = (y_{3} - y_{1})(X_{2} - X_{1}) - (y_{2} - y_{1})(X_{3} - X_{1})$$

$$X_{o} = \frac{(43-41)RP2-(42-41)RP3}{DET3} - \frac{[(43-41)(P_{2}-P_{1})-(42-41)(P_{3}-P_{1})]V^{2}T_{1}}{DET3}$$

$$y_0 = \frac{(x_2 - x_1)RP3 - (x_3 - x_1)RP2}{DET3} - \frac{[(x_2 - x_1)(P_3 - P_1) - (x_3 - x_1)(P_2 - P_1)]V^2T_1}{DET3}$$

Then we can write

$$X_0 = G_1T_1 + G_2$$

 $Y_0 = G_3T_1 + G_4$

where
$$G_{1} = \frac{\left[(4_{2} - 4_{1})(P_{3} - P_{1}) - (4_{3} - 4_{1})(P_{2} - P_{1}) \right] \vee^{2}}{DET3}$$

$$G_{2} = \frac{(4_{1} - 4_{1})RP2 - (4_{2} - 4_{1})RP3}{DET3}$$

$$G_{3} = \frac{\left[(X_{3} - X_{1})(P_{2} - P_{1}) - (X_{2} - X_{1})(P_{3} - P_{1}) \right] \vee^{2}}{DET3}$$

$$G_{4} = \frac{(X_{2} - X_{1})RP3 - (X_{3} - X_{1})RP2}{DET3}$$

If t_o is available from S-P data; i.e., if t_o =ORGS, calculate X, and Yo and set Z_o =ZTR.

If t_o is not available, set t_o = t_o =

where
$$G_{5}T_{1}^{2}+G_{6}T_{1}+G_{7}=0$$
where
$$G_{5}=(G_{1}^{2}+G_{3}^{2}-V^{2})$$

$$G_{6}=-2[G_{1}(X_{1}-G_{2})+G_{3}(Y_{1}-G_{4})]$$

$$G_{7}=(X_{1}-G_{2})^{2}+(Y_{1}-G_{4})^{2}+2TR^{2}$$
Set
$$G_{8}=G_{6}^{2}-4G_{5}G_{7}$$

$$G_{9}=\sqrt{G_{8}}$$

The two roots of the quadratic are

$$TIM = \frac{-G_6 - G_9}{2G_5}$$

$$TIP = \frac{-G_6 + G_9}{2G_5}$$

Substitute T/M and T/P, successively, into the quadratic. Select the root that leaves the smallest "residual" and test whether that residual < 0.001. If so, set T_1 equal to that root. If not, go to the routine that places the hypocenter at the nearest station.

Calculation of Traveltimes, Derivatives, and

Angles of Incidence

(Subroutines TPAR and TRYDRY)

Program TRYDRV, on which these subroutines are based, was designed to calculate traveltimes and derivatives of traveltimes with respect to epicentral distance and focal depth for events in an "earth" consisting of N-I flat layers above a homogeneous half space. The earth model is described by the depth to the top of layer L and the P-velocity in layer L; i.e., by D(L), V(L), L = I, N, where the index N refers to the half space.

The course of the program can be outlined as follows:

- 1. Determine the layer, J; that contains the focus at depth, H.
- 2. Determine which of the several possible waves (direct, and refractions from successively lower horizons) is the first arrival at distance DELTA.
- 3. Calculate the traveltime and derivatives by an appropriate method: for refracted waves these calculations are straightforward, but for the direct waves a numerical solution must be employed.

Because the traveltime, derivative, and angle of incidence calculations are a critical central part of the hypocenter determination, these subroutines are treated more thoroughly than other subroutines in the program. This writeup describes a somewhat more elaborate version of the subroutine that constitutes a self-contained program as well as a test of the program on an actual earth model (the 3-layer "Hawaii B" structure). It is supplemented by an independent flow chart and a FORTRAN listing of the TRYDRY program. The variables used in the program

and flow chart are identified in the accompanying list. The same notation will be used, generally, in the following section of the writeup, which outlines the mathematical formulation of the program and discusses some of the principal problems that must be solved. The notation used in this section is nearly identical (but not exactly) to that used in HYPOLAYR and its subroutines.

Traveltime of Refracted Waves

(See Sketch A)

The traveltime, to distance DELTA, of seismic waves from a focus in layer J that are refracted along the top of layer M can be written:

$$T = TINJ(M) + DELTA /V(M)$$

The intercept, TINJ(M), can be written:

$$TINJ(M) = TID(J,M) - \frac{TKJ * cos \Theta_M^J}{V(J)}$$

where TID(J,M) is the intercept of a wave with its focus at the top of layer J (at depth D(J)) that is refracted along the top of layer M (at depth D(M)).

Finally,

$$TID(J,M) = \sum_{L=J}^{M-1} \frac{THK(L) * cos \Theta_{M}^{L}}{V(L)} + \sum_{L=J}^{M-1} \frac{THK(L) * cos \Theta_{M}^{L}}{V(L)}$$

in these equations, Θ_M^{L} is the angle of incidence in layer L of a wave that is refracted horizontally in layer M.

Critical Distance (Initial Point) of Refracted Waves

Analogous equations can be written for the distance to the initial point (distance of critical reflection) of the wave from a focus at depth H (in layer J) that is refracted along the top of layer M.

$$DIDJ(M) = DID(J,M) - TKJ * tan \Theta_{M}^{J}, and$$

$$DID(J,M) = \sum_{L=J}^{M-1} THK(L) * tan \Theta_{M}^{J} + \sum_{L=1}^{M-1} THK(L) * tan \Theta_{M}^{J}$$

where DID(J,M) is the critical distance for a wave with a focus at the top of layer J (depth D(J)) that is reflected from the top of layer M (depth D(M)).

For waves that are refracted along or critically reflected from the top of layer M, the angle of incidence in layer M is 11/2.

Critical Distance and Intercept Formulas in Terms of Layer Velocities and Thicknesses

From Snell's law
$$SIN \Theta_{M}^{L} = \frac{V(L)}{V(M)} \cdot Hence,$$

$$COS \Theta_{M}^{L} = (1 - V(L))^{2} / (M)^{2} = \frac{V(M)^{2} - V(L)^{2}}{V(M)}, \text{ and}$$

$$tan \Theta_{M}^{L} = V(L) / \sqrt{V(M)^{2} - V(L)^{2}}.$$

The expressions for TID(J,M), DID(J,M) TINJ(M), and DIDJ(M) can be written:

$$TID(J,M) = \sum_{k=1}^{M-1} \frac{THK(L) * \sqrt{V(M)^2 - V(L)^2}}{V(M) * V(L)} + \sum_{k=1}^{M-1} \frac{THK(L) * \sqrt{V(M)^2 - V(L)^2}}{V(M) * V(L)}$$

$$DID(J,M) = \sum_{L=J}^{M-1} \frac{THK(L)*V(L)}{\sqrt{V(M)^2 - V(L)^2}} + \sum_{L=I}^{M-1} \frac{THK(L)*V(L)}{\sqrt{V(M)^2 - V(L)^2}}$$

$$TINJ(M) = TID(J,M) - TKJ* \frac{\sqrt{V(M)^2 - V(J)^2}}{\sqrt{(M)^2 - V(J)}}$$

$$DIDJ(M) = DID(J,M) - TKJ* \frac{TKJ*V(J)}{\sqrt{V(M)^2 - V(J)^2}}$$

In these equations, TKJ is the depth of the focus below the top of layer J, ie., TKJ = H - D(J).

Traveltime of the Direct Wave

The traveltime of the direct wave to distance DELTA from a focus in the first layer is simply:

$$T = \sqrt{H^2 + DELTA^2} / \sqrt{1}$$

For a focus in a deeper layer (J = 2, N) the expression for T as a function of DELTA is too complex to be useful, if it can be obtained at all. However, both T and DELTA are relatively simple functions of $\sin\Theta_{J}$, where Θ_{J} is the angle of incidence of the ray at the focus in layer J. In the program "DIRECT", a simple method for determining $\sin\Theta_{J}$ and then calculating T for any specified DELTA was developed. This routine is employed in the present program to compute the traveltime of the direct ray to distance DELTA for J > 1.

Maximum Distance at Which the Direct Wave Can Be a First Arrival.

(See Sketch B)

Because the traveltime of the direct wave is more time-consuming to calculate than the traveltimes of refracted waves, a preliminary test is made to determine whether DELTA is beyond the range of possible direct-wave first arrivals. Consider a focus at depth H in layer J. At large DELTA the direct wave is asymptotic to the refraction line for a focus at the very top of layer J; but the direct wave is always later than the asymptote. Let the crossover distance between the wave refracted along the top of J from a focus at the top of J and the wave refracted along the top of J + I from a focus at depth H be XOVMAX. Then the crossover between the direct wave and the refracted wave from J + I will be smaller than XOVMAX, and the first arrival at DELTA larger than XOVMAX must be a refracted wave, if J \leq N.

Because the initial point of the refraction from layer K+1 is coincident with the critical reflection from the top of K+1 (or the bottom of K) and because the reflection from the base of K must be later than the direct wave (if K=J) or a refracted wave from the top of K, the initial point of the K+1 refraction curve must lie above the K-refraction curve (or the direct-wave curve if K=J). Hence, for DELTA greater than XOYMAX and J < N the first arrival must be a refracted wave recorded beyond its initial point.

Determination of Which Wave Is the First Arrival at DELTA < XOVMAX

For DELTA less than XOVMAX the first arrival may be the direct wave: so the traveltime of the direct wave must be computed and

compared with the traveltimes of possible refracted phases to establish which arrival is earliest. In this range of DELTA, however, it must be established that any prospective refracted first arrival actually exists at the specific value of DELTA considered; i.e., is DELTA beyond the initial point of the refracted wave?

Derivatives of Traveltime with Respect to Epicentral Distance
and Focal Depth.—When the nature of the first arrival at distance DELTA
has been established, the traveltime of that arrival is set equal to
T and derivatives of the traveltime with respect to DELTA and H are
computed by methods that are appropriate for the first-arrival wave
type.

Derivatives of refracted-wave traveltimes with respect to DELTA and H.--For refracted waves, by differentiation of the equation for T as a function of DELTA and H:

$$\partial T/\partial DELTA = \frac{1}{V(M)}$$

 $\partial T/\partial H = \frac{1}{V(M)^2 - V(J)^2}$
 $V(M) \neq V(J)$

Derivatives of first-layer direct arrivals. -- For the direct wave through layer 1:

$$\frac{\partial T}{\partial DELTA} = \frac{DELTA}{V(1)*\sqrt{H^2 + DELTA^2}}$$

$$\frac{\partial T}{\partial H} = \frac{H}{V(1)*\sqrt{H^2 + DELTA^2}}$$

Derivatives of direct-wave traveltimes: $J \geq 1$.--(See sketch C.) Because both T and DELTA for the direct wave from layers below the first can be expressed in terms of the parameter $\sin \Theta_T$

$$\frac{\partial T}{\partial DELTA}$$
 can be computed as
$$\frac{\frac{\partial T}{\partial sin\Theta_J}}{\frac{\partial DELTA}{\partial sin\Theta_J}}$$

$$\frac{\partial I}{\partial DELTA} = \frac{J-I}{TKJ+U/(V(J)*(I.0-U^2)^{3/2}) + \sum_{L=1}^{J-I} \frac{THK(L)*V(J)*U/(V(L)^2*(\frac{V(J)^2}{V(L)^2}-U^2)^{3/2})}{TKJ/(I.0-U^2)^{3/2} + \sum_{L=1}^{J-I} \frac{J-I}{THK(L)*V(J)^2/(V(L)^2*(\frac{V(J)^2}{V(L)^2}-U^2)^{3/2})}$$

where

Next, we must calculate
$$\frac{\partial T}{\partial H}|_{DELTA}$$
 for the direct arrival from layer J.

Letting $U = Sin \Theta_J$, and h = TKJ = H - D(J), and $DELTA = \Delta$,

$$T = \frac{A}{V(J) \times \sqrt{1.0 - U^{2}}} + \sum_{L=1}^{J-1} \frac{THK(L) \times V(J)}{V(L)^{2} \times \left(\frac{V(J)^{2}}{V(L)^{2}} - U^{2}\right)^{1/2}}$$

$$\Delta = \frac{1}{\sqrt{1.0-U^2}} + \sum_{L=1}^{J-1} \frac{THK(L) * U}{\left(\frac{V(J)^2}{V(L)^2} - U^2\right)^{1/2}}$$

Holding $U=\sin\Theta_{J}=\mathrm{const}$, increase h by an amount δh . The corresponding changes in T and Δ are

$$\delta \Delta_1 = \frac{\partial \Delta}{\partial A} |_{u} * \delta A$$

Next, change U by an amount δU , holding h constant so that the change in Δ , $\delta \Delta_2$, is equal and opposite to that caused by the previous change in h.

$$\delta \Delta_2 = \frac{\partial \Delta}{\partial U} |_A * \delta U = -\frac{\partial \Delta}{\partial U} |_U * \delta A = -\delta \Delta_1$$

Thus, the required 64 is:

$$\delta U = -\frac{\frac{\partial \Delta}{\partial A}|_{u}}{\frac{\partial \Delta}{\partial U}|_{A}} * \delta A$$

The corresponding change in T is

$$\delta T_2 = \frac{\partial T}{\partial u} |_{\mathcal{H}} \delta U$$

Substituting the previous expression for 64

$$\delta T_2 = -\frac{\partial T}{\partial u} h^* \frac{\frac{\partial \Delta}{\partial h}|_{u}}{\frac{\partial \Delta}{\partial u}|_{h}} * \delta h$$

The total change in Δ , i.e., $\delta\Delta_1+\delta\Delta_2=0$, and the total change

In T is
$$\delta T = \delta T_1 + \delta T_2 = \frac{\partial T}{\partial A}|_{u} * \delta A - \frac{\partial T}{\partial U}|_{A} * \frac{\frac{\partial \Delta}{\partial A}|_{u}}{\frac{\partial U}{\partial U}|_{A}} * \delta A$$

$$\frac{\delta T}{\delta A}|_{\Delta} = \frac{\partial T}{\partial A}|_{u} - \frac{\partial T}{\partial U}|_{A} * \frac{\frac{\partial \Delta}{\partial A}|_{u}}{\frac{\partial \Delta}{\partial U}|_{A}}$$

We have previously calculated

$$\frac{\frac{\partial T}{\partial u}|_{A}}{\frac{\partial \Delta}{\partial u}|_{A}} = \frac{\partial T}{\partial \Delta}|_{A}$$

Passing to the limit

$$\frac{\partial T}{\partial A} \Big|_{\Delta} = \frac{\partial T}{\partial A} \Big|_{u} - \frac{\partial T}{\partial \Delta} \Big|_{R} * \frac{\partial \Delta}{\partial A} \Big|_{u}$$

But
$$\frac{\partial T}{\partial A}|_{u} = \frac{1}{\sqrt{(J)\sqrt{1.0-U^{2}}}}, \frac{\partial \Delta}{\partial A}|_{u} = \frac{U}{\sqrt{1.0-U^{2}}}$$

and

$$\frac{\partial T}{\partial h} = \frac{1.0}{V(J) \times \sqrt{1.0 - 42^{2}}} - \frac{4}{\sqrt{1.0 - 42^{2}}} \times \frac{\partial T}{\partial \Delta} \Big|_{h}$$

Thus

$$\frac{\partial T}{\partial h|_{\Delta}} = \frac{1.0 - V(J) * U * \frac{\partial T}{\partial \Delta}|_{A}}{V(J) * \sqrt{1.0 - U^{2}}}$$

in the notation used in the FORTRAN program

$$DTDH = \frac{1.0 - V(J) \times U \times DTDD}{V(J) \times \sqrt{1.0 - U^2}}$$

Notation Used in the TRYDRY Program

HIN	initial focal depth
DELH.	increment in focal depth)
MAXH	maximum focal depth) Used in test of program
KREC	total number of stations considered)
N	number of layers plus one
V(L)	P-velocity in layer L
D(L)	depth to top of layer L
DELTA(I)	epicentral distance to station I
THK(L)	thickness of layer L
TID(K,M)	intercept of refracted wave from a focus at
	boundary D(K) and refracted along boundary
	$D(M); M \geqslant K.$
DID(K,M)	critical distance of refracted wave described above;
	i.e., epicentral distance of the initial point of
	the refraction curve.
Н	focal depth
J	layer containing focus
TKJ	distance of focus from top of layer J
TINJ(L)	intercept of wave from depth H (in layer J) and
	refracted along boundary $D(L)$; $L \gg J$.
DIDJ(L)	critical distance of wave from depth H (in layer J)
,	and refracted along D(L).
TR(M)	traveltime of refracted wave from focus at depth H
	to distance DELTA(i)

TMIN= 999.99. arbitrarily large traveltime for use in scheme to identify first arrival at distance DELTA(I)

XOYMAX "safe" estimate of maximum distance at which the first arrival might be the direct wave

T(I) traveltime of wave from focus at depth H to epicentral distance DELTA(I)

DTDD(1) OT(I) / ODELTA

H6 \ (1)T6 (1)HQTQ

MODE(I) = 1 identifies "refracted" arrivals.

TDJ1 · traveltime of direct wave from a focus in layer 1.

MODE(I) = 2 Identifies a direct arrival from a focus in layer 1.

XBIG upper limit of interval containing the point at which the direct wave from a focus in J leaves layer J

XLIT lower limit of interval containing the point at which the direct wave from a focus in J leaves layer J.

UL value of $\sin \Theta_{\mathcal{I}}$ computed from XLIT

UB value of sin 9, computed from XBIG

DELBIG value of DELTA corresponding to XBIG

DELLIT value of DELTA corresponding to XLIT

TR trial value of X_J, the epicentral distance at which the direct ray leaves layer J

U value of $\sin \Theta_{J}$ computed from XTR (Θ_{J} = angle of incidence in layer J).

the value of DELTA that corresponds to XTR DELXTR TEST = DELTA(I) - DELXTR iteration counter in loop to find X_J , $\sin\Theta_J$, etc. LL asymptote approached by TDIR when DELTA(1) >> TDC indicates direct traveltime and derivatives calculated MODE(I) = 3on the basis of TDC for DELTA(I) >> TKJ Sums required in the calculation of DTDO(I) for the ALFA) . BETA) direct wave MODE(I) = 4indicates direct arrival TDIR , traveltime of direct wave


```
SUM I = \sum_{L=1}^{K-1} THK(L) * \sqrt{V(M)^2 - V(L)^2} / V(M) * V(L)

SUM A = \sum_{L=1}^{K-1} THK(L) * V(L) / \sqrt{V(M)^2 - V(L)^2}

SUM A = \sum_{L=1}^{M-1} THK(L) * \sqrt{V(M)^2 - V(L)^2} / V(M) * V(L)

SUM B = \sum_{L=K}^{M-1} THK(L) * V(L) / \sqrt{V(M)^2 - V(L)^2}

TID (M,M) = SUM I

DID (M,M) = SUM I

DID (M,M) = SUM I

DID (I,M) = 2SUM I

DID (I,M) = 2SUM I

TID (I,M) = 2SUM I

DID (I,M) = 2SUM I

TID (I,M) = 2SUM I

DID (I,M) = 2SUM I

TID (I,M) = SUM I

DID (I,M) = SUM I

SUM I = I

DID I
```


ALFA = $TKJ/(1.0-U^2)^{3/2} + \sum_{L=1}^{J-1} THK(L)*V(J)^2/V(L)^2* \left(\frac{V(J)^2}{V(L)^2} - U^2\right)^{3/2}$ BETA = $TKJ*U/V(J)*(I.0-U^2)^{3/2} + \sum_{L=1}^{J-1} THK(L)*V(J)*U/V(L)^2* \left(\frac{V(J)^2}{V(L)^2} - U^2\right)^{3/2}$ DTDD(I) = BETA/ALFA

DTDH(I) = $(I.0 - V(J)*U*DTDD(I))/(V(J)*\sqrt{I.0-U^2})$ MODE(I) = H

WRITE: N, H, J, TKJ (D(4), V(4), 4=1,N)

(I, DELTA(I), T(I), DTDD(I), DTDH(I),

MODE(I), I=1, KREC)

TRAVDRIV Listing (BCD interpreter

```
//TRAVORIV JOB [C488,437,3,3],:948 EATON:,MSGLEVEL×1
// EXEC FORTHCLG,PARM.FORT×:MAP,NODECK,BCD:
//FORT.SYSIN DD *
C TRAVELTIME AND DERIVATIVES N=1 LAYERS
      DIMENSION V(10), D(10), THK(10), TID(10, 10), TINJ(10), TR(10),
     1DID(10,10),DIDJ(10),DELTA(20),T(20),DTDD(20),DTDH(20),MODE(20)
      SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)=(Z*Z))
      READ(5,500)N, HIN, DELH, HMAX
  500 FORMAT(15,3F10.3)
      READ(5,505) (V(L),D(L),L=1,N)
  505 FORMAT(2F10.3)
C READ LIST OF DELTAS FOR TRIAL CALCULATIONS
      READ(5,510)KREC, (DELTA(L), L=1, KREC)
  510 FORMAT(15, (5F10.3))
C COMPUTE THK(L)
      THK(N)=0.0
    DO 10 K=2,N
      L=K-1
     THK(L)=D(K)-D(L)
· 10 CONTINUE
C COMPUTE INTERCEPTS AND CRITICAL DISTANCES FOR
                                                    BOUNDARY FOCI
      TID(1,1)=0.0
      DID(1,1)=0.0
      N1=N-1
      DO 15 M=2.N
      M1=M-1
      SUM1=0.0
      SUMA=0.0
      DO 12 L=1,M1
      SUM1=SUM1+THK(L)*SQRT(V(M)*V(M)-V(L)*V(L))/(V(M)*V(L))
      SUMA=SUMA + THK(L)+V(L)/SQRT(V(M)+V(M)-V(L)+V(L))
   12 CONTINUE
      TID(M,M)=SUM1 -
      DID(M,M)=SUMA
   15 CONTINUE
      DO 20 M=2.N
      M1=M-1
      SUM2=0.0
      SUMB=0.0
      DO 18 L=1,M1
      SUM2=SUM2+THK(L)*SQRT(V(M)*V(M)-V(L)*V(L))/(V(M)*V(L))
      SUMB=SUMB + THK(L) + V(L) / SQRT(V(M) + V(M) - V(L) + V(L))
   18 CONTINUE
      TID(1,M)=2.0*SUM2
      DID(1,M)=2.0*SUMB
   20 CONTINUE
      DO 50 K=2,N1
      KK=K+1
      K1=K-1
      DO 50 M=KK.N
      M1=M-1
      SUM1=0.0
      SUM2=0.0
     SUMA=0.0
      SUMB=0.0
```

```
00 30 L=1.K1
      SUM1=SUM1+THK(L) +SQRT(V(M)+V(M)-V(L)+V(L))/(V(M)+V(L))
      SUMA=SUMA + THK(L)+V(L)/SGRT(V(M)+V(M)-V(L)+V(L))
   30 CONTINUE
      DO 40 L=K,M1
      SUM2=SUM2+THK(L)*SQRT(V(M)*V(M)-V(L)*V(L))/(V(M)*V(L))
      SUMB=SUMB + THK(L) *V(L)/SQRT(V(M) *V(M) *V(L) *V(L))
  40 CONTINUE
      TID(K,M)=SUM1+2.0*SUM2
      DID(K,M)=SUMA+2.0+SUMB
   50 CONTINUE
C COMPUTE LAYER J CONTAINING FOCUS AT DEPTH H AND DEPTH TKJ OF FOCUS
C BELOW TOP OF LAYER J
      H=HIN
   51 L=0
   53 L=L+1
      IF(L .GT. N)GO TO 56
      IF(D(L)-H)53,53,55
   55 J=L-1
      GO TU 57
   56 J=N
   57 TKJ=H-D(J)
      IF(J .EQ. N)GO TO 61
CCOMPUTE THE INTERCEPT OF WAVE FROM FOCUS IN LAYER J AND REFRACTED
C ALONG THE TOP OF LAYER L
      DO 58 L=1,N
      TINJ(L)=0.0
      DIDJ(L)=0.0
   58 CONTINUE
      JJ=J+1
      DO 60 L=JJ,N
      TINJ(L)=TID(J,L)-TKJ+SQRT(V(L)+V(L)-V(J)+V(J))/(V(L)+V(J))
      DIDJ(L)=DID(J,L)=TKJ*V(J)/SQRT(V(L)*V(L)-V(J)*V(J))
   60 CONTINUE
C COMPUTE DELTA BEYOND WHICH ALL IST ARRIVALS ARE REFRACTIONS
      ((L)V-(LL)V)\((L,L)DIT-(LL)LNIT)*(L)V*(LL)V=XAMVDX
   61 CONTINUE
C BEGIN CALCULATIONS FOR DEPTH H AND DELTA(I) I=1, KREC
      DO 300 I=1, KREC
C DETERMINE WHICH BRANCH OF THE TT CURVE CORRESPONDS TO DELTA(I)
      DO 90 L=1,N
      TR(L)=0.0
  90 CONTINUE
      IF(J .EQ. N)GO TO 215
  100 DO 102 M=JJ,N
      TR(M)=TINJ(M)+DELTA(I)/V(M)
  102 CONTINUE
      TMIN=999.99
      MEJ
  104 M = M + 1
      IF(TR(M)-TMIN)106,106,108
  106 IF(DIDJ(M) .GT. DELTA(I)) GO TO 108
      K=M
      TMIN=TR(M)
  108 IF(M .LT. N) GO TD 104
```

```
IF(DELTA(I)-X0VMAX)202,120,120
C CALCULATE IT AND DERIVS FOR WAVES RECORDED BEYOND XOVMAX
  120 T([)=TR(K)
      DTDO(I)=1.0/V(K)
      DTDH(I)==SQRT(V(K)*V(K)=V(J))*V(J))/(V(K)*V(J))
      MODE(I)=1
      GO TO 300
C COMPUTE IT OF DIRECT WAVE THROUGH LAYER J
  202 IF(J .NE. 1)GO TO 215
      TDJ1=SQRT(H+H+DELTA(I)+DELTA(I))/V(1)
  203 IF(TDJ1-TMIN)205,120,120
  205 T(I)=TDJ1
      OTDD(I)=DELTACI)/(V(1) +SQRT(H+H+DELTACI)+DELTACI)))
      DTDH(I)=H/(V(1) + SQRT(H+H+DELTA(I) + DELTA(I)))
      MODE(I)=2
      GO TO 300
  215 LL=0
C BEGIN ROUTINE TO FIND ROOT OF REFRACTION EQUATION
      XBTG=OELTA(I)
      XLIT=DELTA(I) +TKJ/H
      UB=XBIG/SQRT(XBIG+XBIG+TKJ+TKJ)
      UL=XLIT/SQRT(XLIT+XLIT+TKJ+TKJ)
      DELBIG=TKJ*UB/SQRT(1.0-UB*UB)
      DELLIT=TKJ*UL/SQRT(1.0=UL*UL)
      J1=J-1
      DO 216 L=1,J1
      DELBIG=DELBIG+(THK(L)+UB)/SRTBK(V(J),V(L),UB)
      DELLIT=DELLIT+(THK(L)+UL)/SRTBK(V(J),V(L),UL)
  216 CONTINUE
  218 LL=LL+1
      IF(DELBIG-DELLIT .LT. 0.02) GO TO 231
      XTR=XLIT+(OELTA(I)-DELLIT)+(XBIG-XLIT)/(DELBIG-DELLIT)
      U=XTR/SQRT((XTR+XTR)+(TKJ+TKJ))
      DELXTR=TKJ*U/SQRT(1.0-U*U)
      00 220 L=1,J1
      DELXTR=DELXTR+(THK(L)*U)/SRTBK(V(J),V(L),U)
  220 CONTINUE
      TEST=DELTA(I)-DELXTR
      IF(ABS(TEST)-0.02)235,235,221
221 IF(TEST)222,235,226
  222 XBIG=XTR
      DELBIG=DELXTR
      GO TO 230
  226 XLIT=XTR
      DELLIT=DELXTR
      IF(1.0-U .LT. 0.0002 .AND. LL .GE. 10) GO TO 235
  230 IF(LL .LT, 25) GO TO 218
      GO TO 235
  231 XTR=0.5*(XBIG+XLIT)
      U=XTR/SQRT((XTR+XTR)+(TKJ+TKJ))
  235 CONTINUE
      IF(1.0-U .GT. 0.0002) GO TO 238
C IF U IS TOO NEAR 1.0 COMPUTE TOIR AS WAVE ALONG TOP OF LAYER J
  236 TOC=TID(J,J)+DELTA(I)/V(J)
      IF(J .EQ. N)GO TO 237
```

```
IF(TDC-TMIN)237,120,120
   237 T(1)=10C
      DTDD(I)=1.0/V(J)
      DTDH(I)=0.0
      MODE(I)=3
      GO TO 300
C COMPUTE TOIR FROM ROOT OF OELTA(U) EQUATION
  238 TDIR=TKJ/(V(J)*SQRT(1.0-U*U))
  239 DO 240 L=1,J1
      TDIR=TDIR+(THK(L)+V(J))/(V(L)+V(L)+SRTBK(V(J),V(L),U))
  240 CONTINUE
      IF(J .EG. N)GO TO 245
  243 IF(TDIR-TMIN)245,120,120
  245 T(1)=T01R
C COMPUTE DIDD(I) AND DIDH(I)
      ALFA=TKJ/SQRT(1.0=U*U)**3
      BETA=TKJ+U/(V(J)+SQRT(1.0-U+U)++3)
      DO 247 L=1,J1
      ALFA=ALFA+THK(L)*V(J)*V(J)/(V(L)*V(L)*SRTBK(V(J),V(L),U)**3)
      BETA=BETA+THK(L)*V(J)*U/(V(L)*V(L)*SRTBK(V(J),V(L),U)**3)
  247 CONTINUE
      DTOD(I)=BETA/ALFA
      DTDH(I)=(1.0-VCJ)*U*DTDD(I))/(V(J)*SQRT(1.0-U*U))
      MODE(I)=4
  300 CONTINUE
  310 WRITE(6,530)N,H,J,TKJ,(D(L),V(L);L=1,N)
  530 FORMAT(1H-,7X,2HN=,13,5X,2HH=,F7.2,3X,2HJ=,13,2X,4HTKJ=,F7.2,//
     110x,5HDEPTH,10x,8HVELOCITY,/,(8x,F7.3,10x,F7.3))
  315 WRITE(6,535)(I,DELTA(I),T(I),DTDD(I),DTDH(I),MGDE(I),I=1,KREC)
  535 FORMAT(1HO,4X,1HI,5X,8HOELTA(I),10X,4HT(I),7X,7HOTDD(I),
     17X,7HOTDH(I),7X,7HMODE(I),/(3X,I3,5X,F8.3,6X,F8.3,6X,F8.3,
     26X,F8.3,7X,I3))
C TEST FOR COMPLETION OF RUNS WITH DIFFERENT DEPTHS
  320 IF(HMAX-H)325,325,321
  321 H=H+0ELH
  322 GO TO 51
  325 STOP
      END
//GO.SYSTN DD +
          1.000
                    2.500
                             25.000
               0.000
     3.900
     5.000
               3.100
     6.800
              11.200
     8.250
              14.800
          1.000
                    5.000
                            10.000
                                      15.000
                                                  20.000
    30.000
              50.000
                        80.000 100.000
                                            150.000
/*
//
```

```
IEF285I
           LOADSET.TRAVDRIV
                                                          DELETED
           VOL SER NOS= SYSO3 .
IEF 2951
           SYS1.FORTLIB
                                                          KEPT
IEF2851
 IEF285I
           VOL SER NOS= CAMPO9.
 IEF285I
           SYS2. XTRINSIC
                                                          KEPT
 IEF285I
           VOL SER NOS= SYSO1 .
           SYS1.UT1
 IEF285I
                                                          KEPT
           VOL SER NOS= CAMPO8.
 IEF285I
           GOSET.TRAVORIV
 IEF285 I
                                                          PASSED
 IEF285I
           VOL SER NOS= SYSO3 .
 IEF285I
           SYSOUT
                                                          SYSOUT
           VOL SER NOS=
 IEF295I
                                                                            cocci
.//GO
          EXEC
               PGM=*.LKED.SYSLMOD,COND=((5,LT,FORT),(5,LT,LKED))
 //FT01F001 DD DSNAME=SYS1.UT1.DISP=OLD.DCB=(RECFM=V)
                                                                            00000
                                                                            0000
 //FT02F001 DD DSNAME=SYS1.UT2,DISP=OLD,DCB=(RECFM=V)
 //FTO3FOO1 DD DSNAME=SYS1.UT3,DISP=OLD,DCB=(RECFM=V)
                                                                            20001
                                                                            00001
 //FTO4FOO1 DD DSNAME=SYS1.UT4, DISP=OLD, DCB=(RECFM=V)
 //FT05F001 DD DDNAME=SYSIN
                                                                            00001
 //FT06F001 DD
                                                                            00001
                SYSOUT=A
 //FT07F001 DD UNIT=SYSCP
                                                                            00001
 //FT13F001 DD DSNAME=SYS1.UT5,DISP=OLD,DCB=(RECFM=V)
                                                                            33001
 //GO.SYSIN DD *
 IEF236I ALLOC. FOR TRAVORIV GO
 IEF2371 PGM=*.DD ON 330
 IEF2371 FT01F001 ON 1C0
 IEF237I FT02F001 ON 330
 IEF237I FT03F001 ON 330
 IEF237I FT04F001 ON 330
 IEF237I FT05F001 ON OOC
 IEF237 I FT07F001 ON 00D
 IEF237I FT13F001 ON 330
```

	. .	N# 4	H#	1.00	1#	1	TKJ#	1.00				
		DEPTH		VEL	CITY							
		0.0			900							
•		3.100			000	•						
•		11.200			800							
		14. 800			250							
	I	DELTA	%I<	٠	T%! <		DTO	00%1<	DT	DH%I<	MODESI	<
1	1.	1.	000		3.363		C	.181		0.181	2	
V	2	5.	000		1.307	•		.251		0.050	2	
1	3	10.	000		2.577	•		255		0.026	2	
	4	15.	000		3.834	·		-200	-	0.160	1	
	5	20.	000		4.834		•	200	-	0.160	1 .	
	6	30.	000		6.834			200	-	0.160	1	
	7	50.	000	10	0.412			121	-	0.226	1	
	8	80.	.000	1	4.049	1	(121	-	0.226	1	
	9	100.	000	1	6.473		C	.121		0.226	1	
	10	. 150.	000	2	2 . 53 3		(0.121	-	0.226	.1	
	•	•						•				

N# 4 H# 3.50 J# 2 TKJ# 0.

DEPTH VELOCITY
0.0 3.900
3.100 5.000

```
11.200
                          6.800
      14.800
                          8.250
        DELTATIC
                            T31 <
                                        DTDDTIC
                                                        DTDHZIC
                                                                        MODEZIC
           1.000
                           0.910 ~
                                          0.068
                                                          0.188
           5.000
                           1.511 508
                                          0.193
                                                          0.053
          10.000
                           2.503 501
                                          0.200
                                                          0.013
          15.000
                           3.499 477
                                          0.200
                                                          0.007
          20.000
                           4.502 499
                                          0.200
                                                          9.005
          30.000
                           6.497 497
                                          0.200.
                                                          0.0
                                                                .003
          50.000
                           9.874 -
                                          0.121
                                                         -0.159
          80.000
                          13.510 -
                                          0.121
                                                         -0.159
         100.000
                          15.935 ~
                                          0.121
                                                         -0.159
10
         150.000
                          21.995
                                          0.121
                                                         -0.159
                                  土3
                     6.00
                                 2 : TKJ#
                                            2.90
      DEPTH
                       VELOCITY
      0.0
                          3.900
      3.100
                         5.000
     11.200
                         6.800
     14.800
                         8.250
       DELTASIC
                           7%I<
                                        DTDDTIC
                                                        DTDH%I<
                                                                        MODETIC
           1.000
                           1.394
                                          0.037
                                                          0.197
           5.000
                          1.781 750
                                          0.142
                                                          0.141
          10.000
                          2.622 ~
                                          0.184
                                                          0.078
          15.000
                          3.571 572
                                          0.194
                                                          0.049
          20.000
                           4.549
                                          0.197
                                                          0.035
                                 77-8 x,00
          30.000
                          6.533
                                          0.199
                                                          0.022
          50.000
                          9.476
                                          0.121
                                                         -0.159
 8
          80.000
                          13.113
                                          0.121
                                                         -0.159
 9
        100.000
                         15.537
                                          0.121
                                                         -0.159
10
         150.000
                         21.598
                                          0.121
                                                         -0.159
                     8.50
                                            5.40
      DEPTH
                       VELOCITY
      0.0
                         3.900
      3.100
                         5.000
     11.200
                         6.800
     14.800
                         8.250
       DELTAZIC
                           771<
                                        DTDD%I<
                                                        >12HC1D
                                                                       MODESIC.
           1.000
                          1.888 ~
                                          0.025
                                                          0.198
2
          5.000
                          2.171 170
                                          0.110 109
                                                          0.167
 3
         10.000
                          2.870 565
                                          0.162
                                                          0.117
         15.000
                          3.738 739
                                          0.182
                                                          0.083
 5
         20.000
                          4.671 673
                                          0.190
                                                          0.062
 6
         30.000
                          6.527. v
                                          0.147
                                                         -0.136
7
         50.000
                          9.079 ~
                                          0.121
                                                        -0.159
 8
         80.000
                         12.715 ~
                                          0.121
                                                         -0.159
9
        100.000
                         15.139 -
                                          0.121
                                                        -0.159
        150.000
                         21.200
                                          0.121
                                                         -0.159
               H#: 11.00
                                            7.90
```

DEPTH VELOCITY

```
0.0
                          3.900
       3.100
                          5.000
      11.200
                          6.800
      14.800
                          8.250
        DELTASIC
                            TZIC
                                         DTDD21<
                                                         DTDH%I<
                                                                         MIDEZIC
 1
           1.000
                           2.385~
                                           0.019.
                                                           0.199
                                                                           4
 2
          . 2.000
                           2.606 605
                                           0.088
                                                           0.180
                                                                           4
          19.000
                           3.197 194
                                           0.142
                                                           0.141
          15.000
                           3.978 171
                                           0.168
                                                           0.108
          20.000
                           4.717 V
                                           0.147
                                                          -0.135
          30.000
                           6.188 -
                                           0.147
                                                          -0.136
          50.000
                           8.681 -
                                           0.121
                                                          -0.159
          80.000
                          12.317 -
                                           0.121
                                                          -0.159
         100.000
                          14.742 V
                                           0.121
                                                          -0.159
         150.000
                          20.802 V
                                           0.121
                                                          -0.159
                                 ± 3
    N#
                    13.50
                             J#
                                  3
                                     TKJ#
                                             2.30
      DEPTH
                        VELOCITY
      0.0
                          3.900
    . 3.100
                          5.000
     11.200
                          6.800
     14.800
                          8.250
       DELTATIC
                            TTIC
                                         DTDDTIC
                                                         DT DHTI <
                                                                         MODETIC
 1
           1.000
                           2.761 76U
                                           0.015
                                                           0.146
 2
           5.000
                           2.930
                                  .
                                           0.068
                                                           0.130
          10.000
                           3.397
                                           0.114
                                                           0.093
          15.000
                           4.031 030
                                           0.136
                                                           0.056
 5
          20.000
                           4.733 731
                                           0.143
                                                           0.034
          30.000
                           6.033
                                           0.121.
                                                          -0.083
 7
          50.000
                           8.458
                                           0.121
                                                          -0.083
 8
          80.000
                          12.094
                                  1
                                           0.121
                                                          -0.083
                                                                           1
 9
         100.000
                          14.518.
                                           0.121
                                                          -0.083
10
         150.000
                          20.579
                                           0.121
                                                          -0.083
                    16.00
                             J#
                                  4 TKJ#
                                             1.20
      DEPTH
                       VELOCITY
      0.0
                          3.900
      3.100
                          5.000
     11.200
                          6.800
     14.800
                          8.250
       DELTATIC
                          TRIC
                                        DTDDTIC
                                                        DTDH%I<
                                                                        YODERIC
 1
           1.000
                           3.095 OK
                                           0.011 012
                                                          0.121
                                                                          4
 2
           5.000
                           3.230 V
                                           0.054
                                                           0.108
 3
          10.000
                           3.610 609
                                          0.094
                                                          0.076
                                                                  077
          15.000
                           4.139 137
                                           0.114
                                                           0.040
                                                                  041
          20.000
                           4.727 724
                                           0.120
                                                           0.020
 6
          30.000
                           5.931
                                  130
                                           0.121
                                                          0.009
 7
          50.000
                           8.354 373
                                           0.121
                                                           0.004
 8
          80.000
                         11.986
                                          0.121
                                                          0.0
                                                                  002
 9
         100.000
                          14.410
                                           0.121
                                                          0.0
        150,000
                          20.471
                                           0.121
                                                           0.0
                    18.50
                                             3.70
```

DEPTH 0.0 3.100 11.200 14.800	VELOCITY 3.900 5.000 6.800 8.250		·,
I DELTATI < 1.000	3.397 F 0.0 3.507 566 0.0 3.822 f21 0.0 4.278 277 0.1	09 0 • 121 4 45 0 • 113 4 79 0 • 092 4 01 0 • 067 4	I <
5 20.000 6 30.000 7 50.000 8 80.000 9 100.000 0 150.000	5.973 \(\tau \) 0.1 8.374 \(\frac{273}{73} \) 0.1 11.999 \(\frac{498}{78} \) 0.1 14.419 \(\frac{470}{76} \) 0.1 20.478 \(\frac{476}{76} \) 0.1	19 0.025 4 21 0.012 4 21 0.007 4 21 0.005 4	
N# 4 H#	•	•20	
DE PTH 0.0 3.100 11.200 14.800	VELOCITY 3.900 5.000 6.800 8.250		ī
I DELTATI< 1	3.700 \(\tau \) 3.792 791 0.0 4.062 \(\tau \) 4.464 463 0.0 4.952 151 0.1	08 0.121 4 38 0.115 4 69 0.100 4 90 0.081 4 04 0.063 4	1.<
7 50.000 8 80.000 9 100.000 0 150.000	8.414 412 0.1 12.021 0.1 14.437 436 0.1	20 0.020 4 21 0.011 4 21 0.009 4	
N# 4 H# DEPTH 0.0 3.100 11.200 14.800	VELDCITY 3.900 5.000 6.800 8.250	•70	
I DELTATIC 1	4.002 ~ 0.00 4.082 ~ 0.00 4.318 ~ 0.00 4.677 ~ 0.00 5.123 124 0.00 6.166 165 0.1 8.473 470 0.1 12.054 ~ 0.1 14.463 461 0.1	07	[<
	0.0 3.100 11.202 14.800 I DELTATI < 1	0.0 3.100 5.000 11.207 6.800 11.207 6.800 11.207 6.800 11.208.250 I DELTATIC TTIC DYDOX 1 1.000 3.397 0.0 2 5.000 3.507 56 0.0 3 10.000 4.278 277 0.1 5 20.000 4.813 77 0.1 5 20.000 5.973 0.1 7 50.000 8.374 273 0.1 7 50.000 8.374 273 0.1 8 80.000 11.999 47% 0.1 150.000 14.419 42.0 0.1 150.000 20.478 476 0.1 DEPTH VELOCITY 0.0 3.900 3.100 5.000 11.207 6.800 11.207 6.800 11.208 6.800 14.800 8.250 I DELTATIC TTIC DYDOX 2 5.000 3.700 0.0 3.100 5.000 11.207 6.800 11.208 6.800 12.014 441 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 8 80.000 12.021 0.1 9 100.000 4.062 0.1 DEPTH VELOCITY 0.0 3.900 3.100 5.000 11.200 6.800 12.021 0.1 8 80.000 12.021 0.1 9 100.000 4.062 0.1 150.000 4.062 0.0 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.201 0.1 150.000 4.082 0.0 11.200 6.800	0.0 3.900 3.100 5.000 11.200 6.800 11.200 6.800 11.200 8.250 1 1.000 3.397 0.009 0.121 6 2 5.000 3.507 50 0.009 0.121 6 2 5.000 3.507 50 0.009 0.121 6 3 10.000 4.278 277 0.101 0.067 4 5 20.000 4.813 20 0.112 0.004 4 6 30.000 5.973 0.119 0.025 4 7 50.000 8.374 273 0.121 0.012 4 8 80.000 11.999 977 0.121 0.007 4 9 100.000 14.419 40 0.121 0.007 4 9 100.000 14.419 40 0.121 0.005 4 0 150.000 3.900 3.100 5.000 11.200 6.800 11.201 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 11.200 6.800 12.201 0.104 0.063 4 15.000 6.055 073 0.115 0.039 4 150.000 12.021 0.121 0.011 4 150.000 12.021 0.121 0.001 4 150.000 12.021 0.121 0.001 4 150.000 12.021 0.121 0.001 4 150.000 6.800 14.800 8.250

					.c. >			11.20	•			
		DEPTH			VELDC I TY					-		
l		3.100		•	3.900 5.000	٠.						
1		1.200			6.800				•	•		
		4. 800			8.250							
ī		DELTA	>12		T%I <	•	DT	DD%I<		DTDH%I<	MOD) E \$1
$\sqrt{\frac{1}{2}}$	•	1.0	000	•	4.305	4		0.006	•	0.121	4	
2	:		. 000		4.375			0.029		0.118	4	
3		10.0		•	4.585	द्ध्य भ	•	0.054		0.108	4	,
4		15.0			4.910	101	. (0.074	•	0.096	. 4	+
5	. •	20.			5.319			0.089		0.082	4	۲
6		30.0		. • • •	6.303			0.106	,	0.060	. 4	+
7	,	50.0			8.550			0.116		0.034	4	>
8 9		80.0			12.099			0.120		0.020	. 4	>
10	•	100.0			14.497			0.120	•	0.015	4	Þ
10	• '	. 1500(,,, ,	` : '	20.526		- '	0.121		0.010	4	>
÷ .			•	`. •.		11				•		
• .		, ,		•	•	• •		•		•	ı	

Calculation of the plane-wave substitute solution

(YELAZ)

Let a plane wave, from a distant source at an azimuth ψ from the cluster and with a speed of V across the cluster strike station 1 at t_1 (nearest), station 2 at t_2 (farthest) and station 3 at t_3 (intermediate). Let the azimuths and distances of stations 2 and 3 (from station 1) be Θ_2 , $\ell_2 + \Theta_3$, ℓ_3 , respectively. Let φ (=V- $\frac{2}{2}\pi$) be the azimuth parallel the advancing wave front.

$$t_2-t_1 = \ell_2 \sin(\Theta_2-\theta) / V$$

 $t_3-t_1 = \ell_3 \sin(\Theta_3-\theta) / V$

whence, eliminating V and setting
$$\gamma = \frac{\pm_3 - \pm_1}{\pm_2 - \pm_1} * \frac{\ell_2}{\ell_3}$$

$$sin(\Theta_3-\varphi)=\gamma sin(\Theta_2-\varphi)$$

(See sketch D)

$$tan \theta = \frac{sin \theta_3 - \gamma sin \theta_2}{\cos \theta_3 - \gamma \cos \theta_2}$$

Thus,

$$\varphi = \tan^{-1} \left(\frac{\sin \theta_3 - \gamma \sin \theta_2}{\cos \theta_3 - \gamma \cos \theta_2} \right)$$

$$V = \frac{l_2 \sin(\theta_2 - \theta)}{t_2 - t_1}$$

Diagram illustrating notation used.

In the VELAZ subroutine

Let $T_i = \ell_i \sin(\phi_i - \theta) / \sqrt{\epsilon_i - \epsilon_i}$ be the calculated traveltime between stations 1 and i.

Let $\mathcal{T}_{i} = (t_{i} - t_{i})$ be the corresponding observed traveltime.

Let $F_{i} = \gamma_{i} - \gamma_{i}$, the station 1 to station i traveltime anomaly.

is a function of \vee and ϕ (and hence $\digamma_{\!\scriptscriptstyle 2}$ is also). In any adjustment of V and \emptyset , $dF_{i} = -dT_{i}$

Let $\mathcal{E}_{\mathcal{L}}$ be the residual that remains after an adjustment of

$$T_i$$
 $(E_i = F_i + dF_i)$. Then

$$dT_i = \frac{\partial T_i}{\partial V} dV + \frac{\partial T_i}{\partial Q} dQ$$

$$\frac{\partial T_i^i}{\partial V} = -\frac{l_i \sin(\theta_i - \theta)}{\sqrt{2}}, \quad \frac{\partial T_i^i}{\partial \theta} = -\frac{l_i \cos(\theta_i - \theta)}{V}$$

$$E_i = F_i + \frac{\text{li} \sin(\theta_i - \theta)}{\sqrt{2}} dv + \frac{\text{li} \cos(\theta_i - \theta)}{\sqrt{2}} d\theta$$

 $E_i = F_i + \alpha_i \gamma_i + \beta_i \gamma_2$

To minimize $\angle E$, we must have

$$\frac{\partial}{\partial Y_i} \sum E_i^2 = 0$$
 and $\frac{\partial}{\partial Y_2} \sum E_i^2 = 0$.

Thus

$$\sum \frac{\partial E_i^*}{\partial x} * E_i = 0$$
 and $\sum \frac{\partial E_i^*}{\partial x} * E_i = 0$.

$$\frac{\partial E_i}{\partial Y_i} = \propto i , \frac{\partial E_i}{\partial Y_2} = \beta i$$

$$\sum \propto i E_i = \left[\propto_i \propto_i \right] Y_i + \left[\propto_i \beta_i \right] Y_2 + \left[\propto_i F_i \right] = 0$$

$$\sum \beta_i E_i = \left[\beta_i \propto_i \right] Y_i + \left[\beta_i \beta_i \right] Y_2 + \left[\beta_i F_i \right] = 0$$

Let

$$A_{11} = [\alpha i \alpha i]$$
, $A_{12} = [\alpha i \beta i]$, $B_{1} = -[\alpha i Fi]$,

$$A_{2i} = [\beta i \propto i]$$
, $A_{22} = [\beta i \beta i]$, $B_i = -[\beta i \beta i]$.

$$A_{11} Y_1 + A_{12} Y_2 = B_1$$

 $A_{21} Y_1 + A_{22} Y_2 = B_2$

Let

Finally
$$Y_{1} = \frac{B_{1}*A_{22} - B_{2}*A_{12}}{DET} = dV$$

$$Y_{2} = \frac{A_{11}B_{2} - A_{21}B_{1}}{DET} = dV$$

Apply these corrections to \vee and \emptyset , and then recalculate the residuals $F_{\mathcal{C}}$ and proceed with another round of correction. When the adjustment in \emptyset , $d\emptyset$, falls below 0.0001 rad, discontinue the adjustment.

Calculate
$$AAF = \sum_{i=1}^{N} |F_i| / N$$
 as a measure of "fit".

<u>Determination of Magnitudes of Microearthquakes Recorded</u> <u>at Small Epicentral Distances</u>

(MAGNTD)

In his pioneering studies of southern California earthquakes during the early 1930's, C. F. Richter observed that the manner in which the maximum trace amplitude, recorded by a standard short-period Wood-Anderson seismograph, diminished with increasing epicentral distance was independent of the size of the earthquake. Thus, $\log B$ vs Δ plots (B = maximum trace amplitude recorded on the Wood-Anderson and Δ = epicentral distance) for earthquakes of various sizes were of a single shape but were displaced, without rotation, relative to each other parallel to the $\log B$ axis: the vertical separation of the curves for two earthquakes being equal to the logarithm of the ratio of their amplitudes. The separation of the curves for two earthquakes is a convenient measure of their difference in size, or (as it was defined by Richter) their difference in magnitude.

Richter (1935) defined magnitude as follows: "The magnitude of any shock is taken as the logarithm of the maximum trace amplitude, expressed in microns, with which the standard short-period torsion seismometer (To = 0.8 sec, V = 2800, h = 0.8) would register that shock at an epicentral distance of 100 kilometers." He plotted $\log B \ vs \Delta$ curves for earthquakes recorded on the southern California network during January 1932 (about 50 earthquakes with magnitudes between 0.5 and 4.5). He then fitted a curve to the $\log B \ vs \Delta$ diagram which, at every distance, was parallel the data curves and crossed the $\log B \ axis$ at $\Delta = 100$ km. This curve (call it the $\log B \ vs \Delta$ curve) corresponds

to that for an earthquake with magnitude zero. The "kit" for computation of earthquake magnitudes was then complete. For an earthquake recorded with maximum amplitude \mathcal{B}_i , at distance Δ_i , $M_i = \log \mathcal{B}_i - \log \mathcal{B}_o \qquad \text{, where } \log \mathcal{B}_o \text{ is read from the curve at distance } \Delta_i.$

To check the validity of the $\log \mathcal{B}$ vs Δ curve, Richter applied the method outlined above to calculate magnitudes for 21 previously studied southern California earthquakes, with magnitudes from 3.2 to 5.2, recorded at distances between 44 and 520 km. He found that data from these earthquakes did not suggest any need to revise the $\log \mathcal{B}$ vs Δ curve but did show the need for individual station corrections that ranged from + .25 unit (Pasadena N-S) to - .40 unit (Tinemeha E-W). Richter cautioned that the $\log \mathcal{B}$ vs Δ curve was only poorly established for distances less than 50 km; and below 25 km it was not established at all.

An attempt to establish the curve for smaller epicentral distances was described by Gutenberg and Richter (1942) in conjunction with further manipulation of the magnitude concept. They showed that $\log B' - M + 2\log D \approx const \qquad \text{for } \Delta \text{ between 22 and 525 km}$ (assuming a focal depth, A), of 18 km, with $D = \sqrt{\Delta^2 + 18^{2-1}}$, where M is the earthquake magnitude and where B' is the maximum trace amplitude of short-period waves on the strong-motion torsion seismometers at Pasadena). Thus, $B'D^2 \approx const$, and this relationship can be used to calculate $\log B_0$ for Δ less than 50 km if we assume a standard focal depth (18 km was chosen). For an earthquake with a focal depth significantly different from 18 km recorded at a small epicentral distance, the magnitude computed

on the basis of the extended $\log B_o$ curve could be grossly in error. We might also protest that the method used to establish the relationship $B^\prime D^2 \approx const$ involved the use of only one instrument and a whole series of earthquakes of increasing magnitude and distance. Thus, variations in the relative excitation of long- vs short-period waves, variations in the rate of attenuation with distance of long- vs short-period waves, etc., are inextricably involved in the relationship obtained, which in turn is used to extend the $\log B_O$ vs Δ curve to short distances for use with very small earthquakes.

Several extremely thorny problems arise when one attempts to compute magnitudes for microearthquakes recorded on modern seismographic equipment at short distances. These problems include:

- i. focal depth cannot properly be ignored at short distances so we need a relationship between amplitude and hypocentral (not epicentral) distance for the zero magnitude earthquake.
- 2. the response of the Wood-Anderson seismograph is implicitly included in Richter's definition of magnitude. These instruments are quite inadequate for the study of microearthquakes. Moreover, their sensitivity is so much lower than most instruments used in microearthquake studies that it is difficult to "calibrate" the new systems for magnitude calculations by simple overlap of observations.
- 3. the Wood-Anderson records horizontal ground motion, whereas the most widely deployed microearthquake seismographs are vertical component instruments.
- 4. unlike teleseisms, for which quite specific wave types can be identified (P, PP, S, etc.) and used for assignment of magnitudes, local

earthquakes generally cannot be reliably resolved into their component waves. The waves which are largest in any given range of distance (indeed those which can be identified at all) vary from region to region depending on the details of crustal structure. In very general terms, the direct S-wave (through the upper crust) is usually largest from 0 to 100-200 km. Between 100 and 200 km (varying with crustal structure and focal depth) the S-wave reflection from the base of the crust emerges with much larger (up to 10 times) the amplitude of the direct S-wave. Beyond the point of emergence of S_MS, this phase diminishes rapidly; and within the next 100 km it has dropped into the background and waves with more complex paths become the largest on the seismogram.

5. attenuation of seismic waves within the crust varies widely from region to region, and assignment of magnitudes on the basis of waves with paths predominantly within the crust will be strongly affected by such variations: the $\log \mathcal{B}_o$ vs Δ curve, in short, should vary from region to region.

Subroutine MAGNTD was written to assign magnitudes compatible with the Richter "local" magnitude to microearthquakes recorded on the USGS portable seismograph cluster. The method employed to achieve this goal can be outlined as follows:

I. the exponent, k, of hypocentral distance in a law $AD^k = const$ (A =ground amplitude corresponding to the maximum vertical component trace amplitude, D =hypocentral distance) was evaluated on the basis of about 100 earthquakes recorded on the portable cluster in central California at distances of 0 to 150 km and for focal depths of \approx 0 to

14 km. It was found that k = 1.7 fit the data (earthquake by earthquake) quite closely and that k does not appear to depend on focal depth nor on magnitude.

2. the log B_o vs Δ curve of Richter was converted to a log B_o vs log D plot (where $D = \sqrt{\Delta^2 + 18^2}$) and lines with slopes of 1.5, 1.7, and 2.0 were drawn through the plotted points to test the adequacy of a relationship of the form $B_o D^k = const$ to express the zero magnitude earthquake amplitude vs distance relationship. Beyond 200 km K is greater than 2. Between 50 and 150 km, a value K = 1.5 fits the data quite well. For K = 1.7, the overall fit from 30 km to nearly 300 km is adequate: no point lies more than 0.10 unit (of log B_o)

off the curve. The plotted points lie above the curve for $\mathcal D$ less than 40 km and $\mathcal D$ between 80 and 250 km. Between 40 and 80 km and beyond 250 km, they lie below the $\mathcal K=1.7$ curve. At distances smaller than 30 or 40 km, the $\mathcal B_o$ values are too poorly established to be considered seriously.

If we divide B_o by 2800 (i.e., by the static magnification of the Wood-Anderson) to obtain A_{O_A} , the equation representing the ground amplitude (in microns) of the zero magnitude earthquake can be written $A_{O_A} * D^{1.7} = 0.7$. This relationship is not independent of the WA response curve because for earth periods greater than 0.8 sec, the magnification of this instrument falls rapidly from its static magnification of 2800.

The difference in response of the USGS portable systems from that of the WA results from several factors: (a) gross difference in sensitivity, (b) restricted passband of the portable system electronics—

ca 17 cps to 0.5 cps, (c) displacement "velocity" response of the EV17 seismometers in the partable system vs displacement response of the WA. As in the derivation of the equation in $A_{\mathcal{O}_{\mathcal{M}}}$ above, it is convenient to ignore the portion of the period-dependency in the EV17 response that results from the tendency of the suspended mass to "follow" the ground motion at earth periods that are longer than the free period of the seismometer (i.0 sec). Such a simplification in the reduction of recorded amplitude to ground amplitude in the case of the portable system introduces an error that is very nearly the same as that introduced in the derivation of $A_{\mathcal{O}_{\mathcal{M}}}$, above. Consequently, the logarithm of the maximum recorded ground motion, as calculated from the portable system seismogram, minus the logarithm of $A_{\mathcal{O}_{\mathcal{M}}}$ for the corresponding value of D, should yield the same magnitude as would have been obtained from a super-sensitive Wood-Anderson.

4. Since the WA measures the horizontal component of ground motion and the EV17 measures the vertical component, we must correct the computed magnitudes for a systemmatic difference in maximum horizontal and vertical recorded amplitudes. A number of the portable systems employed to establish the value of k included horizontal (EV17-H) seismographs as well as verticals. At those stations the ratios $\frac{XH}{P_2}$ and $\frac{XH}{X_2}$ were measured for annumber of events. The first ratio varied from less than 0.5 to about 8, with a median value of 2.5 (the distribution was bimodal, with peaks at 1.2 and 3.3). The second ratio varied from 0.2 to 8, with a median value of 1.75 (mode = 1.25). As only about 90 observations were used in this study, further work is required. Tentative corrections are + .40 to magnitudes based on P_2 and + .25 to magnitudes based on X_2 .

An analysis of the portable system response shows that record amplitude can be converted to ground-motion amplitude by the relationship

for earth periods shorter than about 1.0 sec, where

A ground amplitude in microns

S = maximum trace amplitude in mm (peak to trough).

 C_{10} = trace amplitude in mm (peak to trough) resulting from a $10\mu V(rms)$ signal introduced into the seismic amplifier in lieu of the seismometer output.

T = period (in seconds) of the wave with amplitude S.

The logarithm of $A_{\mu}^{\prime}/A_{o_{\mu}}$ is the magnitude of the earthquake. Thus,

This relationship would apply to the calculation of magnitude using the maximum amplitude on the horizontal EV17-H trace. To shift to the EV17 vertical trace the constant should be changed from -1.85 to -1.60 if the maximum vertical amplitude is used or to -1.45 if the P-wave amplitude is used.

In subroutine MAGNTD provision is made for the use of both P and the maximum ("X") on the vertical component for the computation of magnitude. The magnitude equation is written in the form:

MAGP = $log(CNST*\frac{S*T}{C_{10}}) + PWRP*log D^2 - ZPMAG$ for P, and $MAGX = log(CNST*\frac{S*T}{C_{10}}) + PWRX*log D^2 - ZXMAG$ for X.

The parameters CNST, PWRP, ZPMAG, PWRX, and ZXMAG are read into the program at execution time. Thus, the exponent of $\mathcal D$ and the constants (composed of many factors, including instruments sensitivity, etc.) can be adjusted as required by variations in instrumentation and region.

The constant (0.71) in the equation $A_{o_p} * D^{1.7} = 0.71$ is sensitive to the distance range over which we choose to fit the power law most closely to the zero magnitude reference data. Because magnitude is "defined" at $\Delta = 100 \, \mathrm{km}$, it is tempting to draw the power-law curve through the $\log B_o$ point at $\Delta = 100 \, \mathrm{km}$. For the microearthquakes recorded by the portable system, most observations are at distances smaller than 100 km--averaging 30 km or so. Thus, the curve resulting in the constant 0.71 was drawn to match the B_o vs D data in the range of 30 to 100 km.

In view of the difference in attenuation from region to region, it seems that 100 km is unfortunately large for a magnitude-reference distance if we truly wish an earthquake's magnitude to be simply related to the energy radiated from the focus. Use of a smaller reference distance would require a higher precision in depth determination that is generally attainable at present, however.

Statistical Calculations

Statistical Calculations for Individual Earthquakes

To characterize the quality and reliability of individual, hypocentral solutions, a variety of residuals and statistical parameters are calculated. These include:

 $F_{i} = \gamma_{i} - t_{i} =$ the arrival time residual at station if $AAF = \sum_{i=1}^{N} |F_{i}|/N =$ the mean deviation

 $AVR = \sum_{i=1}^{N} F_i / N$ = the average residual

 $SDP = \left(\frac{\sum_{k=1}^{N-1}}{N-MM-1}\right)^{1/2}$ = the standard deviation of the arrival-time residuals

 $5DX = 5DP \times (A_{ii}^{-1})^{1/2}$ = standard error in longitude (km)

 $SDY = SDP \times (A_{22}^{-1})^{1/2} =$ standard error in latitude (km)

 $SDZ=SDP*(A^{-1}33)^{1/2}$ = standard error in depth (km)

 $SDT = SDP_x(A_{++}^{-1})^{1/2}$ standard error in origin time (sec)

N = number of observations (with combined weights greater than 0.1).

MM = number of hypocentral parameters adjusted.

Ail, etc; = appropriate elements on the principal diagonal of the inverse matrix of coefficients of the unknowns.

(RSPMG); = station i P-mag-average P-mag.

(RSXMG) = station | X-mag-everage X-mag.

Statistical Summary Calculations for a Batch of Earthquakes

A number of counters and sum registers and a variety of tests have been included in the main program to permit the calculation of average residual, standard deviation of the residual, and standard error of the mean residual for the residuals of arrival time, P-magnitude, and X-magnitude at each station for which an adequate number of observations are available in a batch of earthquakes.

For station i (arrival-time-residual statistics):

AVRES: =
$$\sum_{i=1}^{L} (F_i)_i / L$$

SDRES: = $\left[\frac{(L * \sum_{j=1}^{L} (F_i)_j^2) - (\sum_{j=1}^{L} (F_i)_j)^2}{4(4-1)} \right]^{1/2}$
SEM: = SDRES: $/L^{1/2}$

The equations for P-magnitude and X-magnitude are analogous.

For inclusion in the statistical summary, an earthquake must be recorded by at least KTTA stations, have an AAF less than TAAF, and have been located with fewer than IIT iterations. For an individual observation to be included in the summary it must not be larger than TFR (for an arrival-time residual) or AMTST (for a magnitude residual) and must have a combined weight (of the P-phase) of at least TWT (for an arrival-time residual).

KTTA, TAAF, LIT, TFR, AMTST, and TWT are parameters read in at execution time.

These data can be used to correct for obvious persistent station anomalies. For the arrival-time residual this correction can be made by adding the average residual for a station to the "station delay" on the station parameter list.

Provision has also been made to include a station and its data in a batch of earthquakes in such a manner that it is not used in the adjustment of the hypocenter but is treated normally in other respects, including the calculation of summary statistical parameters. Stations listed in the "KOMIT" list on the parameter card extension DX2 are treated in this manner.

Restrictions and Termination Conditions Applied in the Adjustment of ... Hypocentral Parameters in HYPOLAYR

- 1. Depth is not adjusted:
 - a. on the first iteration.
 - b. If the range in $\partial \mathcal{T}_{\partial \mathcal{F}}$, RAH, is less than 0.02.
 - c. if the previous adjustment in epicenter is greater than 10 km.
- 2. Depth is not permitted to become negative (focus in air). Any calculated correction that would place the hypocenter above ground is scaled down so that the hypocenter is raised 6/10 of the distance to the surface. Horizontal and time adjustments are also scaled down, but no farther than 4/10 of the values originally computed.
- 3. Adjustment is not terminated prior to the 5th iteration.
- 4. If depth control has been lost by the 4th iteration, the depth is returned to ZTR before the 5th.
- 5. If AVR | AVLT (e.g., < 0.002),

- ; a. adjustment is terminated after 5 iterations if AAF < AFLT (e.g., < 0.10) and DAAP< ADLT (e.g., < 0.005).
- b. adjustment is terminated after 8 iterations if AAP < APLP (e.g., < 0.30) and DAAF < ADLP (e.g., < 0.003).
- 6. If AVR > AVLT
- a. adjustment is terminated if DAAF < AVLT, i.e., for a stationary solution. II is set equal to "14", AVR is added to the origin time, and the arrival-time residuals and solution statistics are recalculated.
 - b. II = 12

II is set equal to "13", AVR is added to the origin time, and the arrival-time residuals and solution statistics are recalculated.

Appendix 1

HYPOLAYR

List of variables

	- -	
NSTA (2,99)	A4	Station name (on station list)
LAT (2,99)	F2.0	Station latitude, degrees
YAT (2,99)	F5.2	Station latitude, minutes
LON (2,99)	F3.0	station longitude, degrees
XON (2,99)	F5,2	station longitude, minutes
EL (2,99)	F4.0	station elevation, meters
DLY (2,99)	F5.2	station delay, seconds
MDL (2,99)	II	Crustal model used with station
KSITE		Number of stations in station list
V1 (25)	F7.3	Layer velocity, model 1
DP1(25)	F7.3	Depth to top of layer, model 1
NL1		Number of layers, model 1
V2(25)	F7.3	Layer velocity, model 2
DP2(25)	F7.3	Depth to top of layer, model 2
NL2		Number of layers, model 2
LATR	F2.0	Trial latitude, degrees
YATTR	F5.2	Trial latitude, minutes
LOTR ,	F3.0	Trial longitude, degrees
XONTR	F5.2	Trial longitude, minutes
ZTR	F5.2	Trial focal depth, km
LARED	F2.0	Latitude reduction, degrees
LORED	F3.0	Longitude reduction, degrees
DELAZ	F6.1	Test distance for calling VELAZ

V B	F5.2	Half-space velocity for PREHY
MODE	I1	Key to "MODE" computation options
LPC	I1	Punch card option selector
INPRIN	I1	Intermediate printout option selector
IFMT	11	Phase-card format selector
QQ	P7.5	Factor for latitude to km conversion
PPP	F7.5	Factor for longitude to km conversion
ISTS	11	Statistical section option selector
KOLT.	12	Number of stations in ordered P-arrival
		list
SMP	F5.2	Factor to convert "S-P" interval to
	•	"P-0" interval
XNEAR .	F5.0	Lower limit in "distance weighting"
		equ a tion
XFAR	F5.0	Upper limit in "distance weighting"
•		equation
HILO	F5.2	Multiplier to convert low-gain-trace
		amplitudes
CNST	F5.2	System sensitivity factor
PWRP	F5.2	Distance exponent in "P" amplitude-
		distance law
ZPMAG	F5.2	Constant depending on "O" magnitude
		earthquake P-amplitude '
PWRX	F5.2	Distance exponent in "X" amplitude-
		distance law
ZXMAG	F5.2	Constant depending on "O" magnitude
	:	earthquake P-amplitude

NOMIT(99)	M	Name of station on "neglect" list
KOMIT	15	Number of stations on "neglect" list
•	•	in station section
KTTA	15	Test value for number of observations
	•	in station section
IIT	15	Test value for number of iterations
		station section
AMTST	F10.3	Test value for magnitude residual in
	• •	station section
TWT	F10.3	Test value for combined weight in
	•	station section
TFR	F10.3	Test value for station residual in
		station section
TAAF	F10.3	Test value for mean deviation in
٠.		
		deviation (DAAF)
ADLP'	F5.3	Second test value for change in mean ,
•		deviation (DAAP)
ADLT	P5. 3	Pirst test value for change in mean
		(AAP)
AFLP'	P5.2	Second test value for mean deviation
AFLT	F5.2	First test value for mean deviation (AAF)
AVLT'	F5.2	Test value for average residual (AVR)

NL		Number of layers
.V(25)		Velocity of P in layer
DP(25)		Depth to top of layer
THK(25)		Thickness of layer working
TID(25,25)		"Boundary" source intercept variables
D[D(25,25)		"Boundary" source critical distance
•		distance
THK1(25)		Layer thickness, modei 1
TID1(25,25)		"Boundary" source intercept, modei 1
DID1 (25,25)		"Boundary" source critical distance,
		model 1
THK2(25)		Layer thickness, model 2
TID2(25,25)		"Boundary" source intercept, model 2
DID2(25,25)		"Boundary" source critical distance
•		modei 2
KSW		
SUMI		
SUM2		TPAR internal utility variables
SUMA		
SUMB		
SOT		
MSTA (99)	A4	Station name on phase list
QSABE(99)	A3	Alphameric tag, e.g., "IPU"
W(99)	F2.1	Weight (quality of P-arrival)
KDATE (99)	I6	Date (year, month, day)
JHR(99)	12	Hour'

JMIN(99)	12	Minute
P(99)	F5.2	Parrival time (seconds)
AMP(99)	F4.0	Pamplitude (peak-trough, mm)
PRP(99)	F3.2	P period (seconds)
S(99)	F5.2	S arrival time (seconds
AMS (99)	F4.0	S amplitude (peak-trough, mm)
PRS (99)	F3.2	S period (seconds)
AMX(99)	F4.0	"X" amplitude (peak-trough, mm)
PRX(99)	F3.2	"X" period (seconds)
CALP(99)	F4.1	Calibration for P-phase amplitude
CALS (99)	F4.1	Calibration for S phase amplitude
CALX(99)	F4.1	Calibration for "X" phase amplitude
RK(99) .	A3	Remarks
DT(99)	F5.2	Chronometer correction (sec)
	•	
INST	12	Key to "INST" operation options
ZRES	F5.2	Depth restriction for specific event (km)
KREC	•	Number of phase cards read for earthquake
IHR		"Hour" of earliest arrival
G(99) .		Distance-dependent weighting factor for P
GW(99)		Aux. variable in routine for omitting
		specified stations
TP(99)		Reduced P-arrival time (seconds)
PT(99)		Array used in ordering of P-arrival
·		times
ORGS		"S-P" derived origin time

	NEAR
TH1(99)	Azimuth of given station from station
DIST1(99)	Distance of station from station NEAR
PH	Km per minute of longitude at ZHLAT
	NEAR *
ZHLAT	Reduced latitude (minutes) of station
Z	Focal depth (km)
YATEP	Epicenter latitude (minutes)
LATEP	Epicenter latitude (degrees)
XONEP	Epicenter longitude (minutes)
LONEP	Epicenter longitude (degrees)
ORG	Origin time in seconds (reduced)
LHY	Flag Indicating PREHY option used
	station MFAR
	from line joining station NEAR and
KALX	Index of ordered array station farthest
1	ordered P-array
PFAR	P-arrival time at latest station in
	P-array
MFAR .	index of latest station in ordered
PMIN	P-arrival time at earliest station
NEAR	Index of earliest station
,	P-time array
KO(99)	Array of indices of stations in ordered
KOLT	Number of stations in ordered P-time ar
LOSW	Flag indicating existence of ORGS

	·
ALT	Distance from line between station
	NEAR and station KOLT
KALMX	Index of station farthest to "right"
•	of line between station NEAR and
	station KOLT
KALMN	Index of station farthest to "left"
	of line between station NEAR and
	station KOLT
ALTMX .	Distance of station KALMX from line
	between station NEAR and station KOLT
ALTMN	Distance of station KALMN from line
	between station NEAR and station KOLT
XH(99)	Distance of station (in km) west of
·	station NEAR
YH(99)	Distance of station (in km) north of
	station NEAR
AP(3,3)	Coefficients of unknowns in Inglada's
	equation ,,
BP(3)	Known's in Inglada's equation
DETAP	Determinant of AP's
XNOT	Epicenter X-coord (km)
YNOT	Epicenter Y-coord (km)
T1	Traveltime of P to station NEAR
ZSQ	Utility variable in PREHX
DST1	Utility variable in PREHY
DST2	Utility variable in PREHY

: DET3	Determinant of unknowns in "reduced
•	problem
RP2	Combination of knowns in "reduced" problem
RP3	combination of knowns in "reduced" problem
G1	Combination of knowns in "reduced" problem
G2	Combination of knowns in "reduced" problem
G3 ·	Combination of knowns in "reduced" problem
G4	Combination of knowns in "reduced" problem
G5	Combination of variables in "reduced"
	problem
G6	Combination of variables in "reduced"
	problem
G7	Combination of variables in "reduced"
	problem
G8	Combination of variables in "reduced"
	problem
G9	Combination of variables in "reduced"
	problem
T1P	T1, using - V
T1M	T1, using +
AG5	Utility variable in PREHY
QSM	Utility variable in PREHY
AQSM	Utility variable in PREHY
QSP	Utility variable in PREHY
AQSP	Utility variable in PREHY
DEDN	Coefficient for calculating "distance"
	weighting factor

KAZ	Flag indicating routine used in VELAZ
KZSW	Switch to inhibit focal depth adjustment
II	Iteration counter in hypocenter
	adjustment loop
XEP	Epicenter "N-S" grid coordinate (+ = N)
YEP	Epicenter "E-W" grid coordinate (+ = W)
DELMN.	Smallest epicenter-to-station distance
.ZLAT	Mean of epicenter and station latitudes
PP	Longitude scale factorminutes to km
DX(99)	Difference in station and epicenter
v.	X-grid coord
DY(99)	Difference in station and epicentér
	Y-grid coord
DELTA(99)	Epicentral distance (km)
KEY	Utility variable for selecting model
,	in TRVDRV
TKJ	Depth of focus below top of layer
TINJ(25)	intercept of wave refracted along top
	of layer from a focus in layer JL
DIDJ (25)	Critical distance of wave reflected
	from top of layer L from a focus in
	layer JL
XOVMAX	Distance beyond which first arrival must
	be a head wave
TR(99)	Caiculated refraction time (tentative)
T(99)	First arrival traveltime

, DTDD	δ/ 76
•	0T/0 2
DTDH	
ANIN(99)	Angle of incidence at the focus
TDJ1	Calculated traveltime of direct wave
	in layer J
LL	iteration counter in loop to find root
	of refraction equation
XBIG	Utility variable in TRVDRV
XLIT	Utility variable in TRVDRV
UB	Utility variable in TRVDRV
UL	Utility variable in TRVDRV
ARGB	Utility variable in TRVDRV
ARGL	Utility variable in TRVDRV
DELBIG	Utility variable in TRVDRV
DELLIT	Utility variable in TRVDRV
XTR	Utility variable in TRVDRV
U	Root of refraction equation
ARGJ	Utility variable in TRVDRV
DELXTR	Utility variable in TRVDRV
TEST	Utility variable in TRVDRV
TDC	Traveltime of wave from focus very
	near top of layer
TDIR	Traveltime of wave from focus inside
	l a yer
ALFA	Utility variable in TRVDRV
BETA	Utility variable in TRVDRV
	•

AX(99)	27 / 2×
AY(99)	3T/34
AH (99)	9T/97
F(99)	Arrival-time residual
AAF	Mean deviation of arrival times
AAF1	Previous value of AAF
DAAF	Change in AAF
AWF	"Weighted" mean deviation
KSTA	Number of stations used in a solution
WSTA	Sum of weights of stations used in a
	solution
AVR	Average residual
ABVR	Absolute value of average residual
WT	Combined weight (W(I) * G(I))
AVR1	"Saved" value of AVR
[A(4,4]	Coefficient of unknowns in normal
	equation
[B(4)]	Coefficient of knowns in normal
	equation
AHMX .	Maximum AH
AHMN	Minimum AH
RAH	Range of AH
[0(3,3)]	Cofactor of A(1,J)
[C(4,4]]	Cofactor matrix of [A(4,4]]
DETA	Determinant of cofactor matrix
•	· · · · · · · · · · · · · · · · · · ·

,[Y(4)]	Hypocenter correction vector
· MM	Rank of matrix of coefficient of
	adjustment equations
KOUT	Flag indicating HYCOR routine used in
	adjustment of hypocenter (which
	components adjusted)
· ASDX	Absolute values of the elements of the
ASDY	principal diagonal of the inverse
ASDZ	matrix of the matrix of normal
ASDT	equation coefficients
A11 A44	Utility variables in "reduced" HYCOR
	routines
GAM	Utility variable in VELAZ
DENOM	Utility variable in VELAZ
TH1(99)	Azimuth of station from earliest station
PFI	Angle (cw) between north and wave front
VA	Average velocity of wave front across net
KAZ	Flag indicating which VELAZ routine was
• •	used
кт	. Iteration counter in adjustment loop
Y1	Adjustment in VA
Y2	Adjustment in PFI
FT1 (99)	Residual in traveitime from earliest
	station to another
AT(99)	DT/DV
BT(99)	DT /24
AT11	Coefficient in normal equations

AT12	Coefficient in normal equations
AT22	Coefficient in normal equations
BT1	Coefficient in normal equations
BT2	Coefficient in normal equations
DEAT	Determinant of coefficient of unknowns
	in normal equations
PSY	Azimuth toward source of plane wave
R	Depth adjustment restriction factor
VH	Horizontal shift in epicenter
LREC	Number of stations summed in error
	estimate
SDP	Standard error in individual P-arrival
	time
SDX	Standard error in X-coord (km)
SDY	Standard error in Y-coord (km)
SDZ	Standard error in depth (km)
SDT	Standard error in origin time (sec)
OSO	Utility variable in M/Prog
KHR	Origin hour (reduced)
FHR	Origin hour (reduced)
KMIN	Origin minute
FMIN	Origin minute
SEC	Origin second
TS(99)	Traveltime of S-wave
AZ(99)	Azimuth of station from epicenter

EPMG(99) P-magnitude residuals EXMG(99) X-magnitude residuals MC Utility variable in MAGNTD MP Utility variable in MAGNTD SXMAG Utility variable in MAGNTD SPMAG Utility variable in MAGNTD Square of hypocentral distance RAD2 ARGP Utility variable in MAGNTD ARGX Utility variable in MAGNTD PMAG(99) Magnitude computed from P-phase at station XXMG(99) · Magnitude computed from X-phase at station PPMG Average PMAG **XMAG** Average XXMG WGJ Combined "saved" weight **ABFJ** Absolute value of arrival-time residual at station MPC(99) Utility variable in summary statistical calculation SCOF(99) Utility variable in summary statistical

SCOF2(99)

Utility variable in summary statistical calculation

ABEPM Utility variable in summary statistical calculation

MPCP(99)	Utility variable in summary statistical
	calculation
SCOP(99)	Utility variable in summary statistical
•	calculation ·
SCOP2(99)	Utility variable in summary statistical
	calculation
ABEXM	Utility variable in summary statistical
,	calculation
MPCX(99)	Utility variable in summary statistical
	calculation
SCOX(99)	Utility variable in summary statistical
	calculation
SCOX2(99)	Utility variable in summary statistical
	calculation
KPLUS	Switch for extra summary card
AVRES (99)	Average arrival-time residual at station
SDRES (99)	Standard deviation of arrival-time,
	residual at station
SEM(99)	Standard error of mean of average arrival-
	time residual at station
AVREP(99)	Average residual in P-magnitude at
	station
SDREP(99)	Standard deviation of P-magnitude residual
•	at station
SEMP(99)	Standard error of mean of P-magnitude
	residual at station

AVREX(99)	Average residual of X-magnitude at
	station
SDREX(99)	Standard deviation of X-magnitude residual
,	at station
SEMX(99)	Standard error of mean of X-magnitude
	residual at station

HYPOLAYR OUTPUT

INPRIN =	0	. ,	1	,	2	,	3	, 4	, 5
D	[11		l F		1			· I	1
Printout (blocks)	12		12		(3 [11		5	$\binom{3}{5}$	2 / 3
			[13		12		/ 7	(6)	4
					13		8	(7	\ 5
						(9	} 8	(6)
No bracket = print	ed onc	e per	batch			'	- 10	(9	/7
(bracket = print	ed onc	e per	earthqu	ıake			[II	C 10	(8
bracket = print	ed onc	e per	solutio	on			12	TII	. }.9
() bracket = print	ed fir	st 3 i	iteratio	ons			13	12	(10
<pre>{ bracket = 'print</pre>	ed onc	e each	n iterat	ion				[13	[11
									12
									13

The normal INPRIN is 2, which provides a listing of station data, model parameters, and control parameters as well as a listing of the input data for each earthquake and the output results for each solution.

Card punch output	LPC =	0	1	2	3
		none	P1	P1	P1
Output blocks punched a	s	•	P2 .	P3	P1
indicated, once per sol	ution	•	P3		P2
	(•		•	P3

Term by Term Identification of HYPOLAYR Output

30

CALP(L) CALS(L) CALX(L) RK(L) DT(L)

L = 1, KREC

AMP(L) PRP(L) S(L) AMS(L) PRS(L) AMX(L) PRX(L)/

MSTA(L) KDATE(L) JHR(L) JMIN(L) QSABE(L)

W(L) P(L)

97

96

KREC INST ZRES

L = 1, 10/6,

8 341
A(1,1) A(1,2) A(1,3) A(1,4) A(2,2) A(2,3) A(2,4) A(3,3) A(3,4) A(4,4) B(1) B(2) B(3) B(4) RAH INST

PI	13 { 501		495		(487	486	/ 485	10 { 382	. 9 { 345	WRITE BLOCK STATEMENT NUMBER
KDATE(NEAR) KHR KMIN SEC LATEP YATEP LONEP XONEP Z KSTA XMAG II KREC KOUT	on printout	(XMG(I) EXMG(I) RK(I) W(I) G(I) L = 1, KREC	Headings	SDZ SDT KSTA XMAG II KREC VH	KDATE(NEAR) KHR KMIN SEC LATEP YATEP LONEP XONEP Z	Headings	MODE LPC INST LOSW LHY KOUT KAZ OGS AVR PPWG	YATEP XONEP Z ORG VH Y(1) Y(2) Y(3) Y(4)	MM KOUT DETA ASDX ASDY ASDZ ASDT Y(1) Y(2) Y(3) Y(4)	E ENT
AAF SDP SDX SDY SD1	•		E(T) DWAC(T)		AAF SDP SDX SDY/				;	

278	276	s! 275	/ 274	(175	P2	(150	P1 (149	P3 { 504	(P2 { 499	WRITE BLOCK STATEMENT NUMBER
Skip 4 lines	AAF AVR AWF XSTA WSTA	MSTA(L) DELTA(L) T(L) AX(L) AY(L) AH(L) ANIN(L) F(L) $L = 1$, KREC	MODE LHY LATEP YATEP LONEP XONEP Z ORG MSTA(NEAR) MSTA(MFAR) MSTA(KALX)	Skip 4 lines	KDATE(1) JHR(1) JMIN(1) "INSUFFICIENT DATA FOR LOCATION"	Skip 4 lines	KDATE(J) JHR(J) JMIN(J) MSTA(J) "Not ON STATION LIST, REJECT QUAKE"	Punch \$\$\$\$ card to separate event decks	RK(I) W(I) G(I)	NSTA(2,1) DELTA(1) AZ(1) ANIN(1) QSABE(1) TP(1) TS(1) F(1) PMAG(1)	

BLOCK **S2** WRITE STATEMENT NUMBER 353 358 356 Skip 4 lines MSTA(I) FT1(I) TH1(I) I MSTA(KALX) KAZ KDATE(NEAR) JHR(NEAR) JMIN(NEAR) P(NEAR) PSY VA AAF II A = 1, KREC (except I = NEAR) MSTA(NEAR MSTA(MFAR)

CONTENT

```
WRITE
BLOCK STATEMENT
       NUMBER
                KSITE = number of stations on station list
         58
                Station list: See Variable List p. 1
                NL1, NL2 = Number of layers in models 1 and 2, respectively
                Card D4 parameters: See Variable List p. 2
                Card D5 parameters: See Variable List pp. 2-3
                Card DXI parameters: See Variable List p. 3
                Model 1, from card D2: See Variable List p. 1
                Model 2, from card D3; See Variable List p. 1
                Model 1 arrays from TPAR: See Variable List p. 4
                Model 2 arrays from TPAR: See Variable List p. 4
         96/119 Card D7 parameters and number of phase cards: See
                  Variable List p. 5
              Format 2 phase card (D6-2) parameters: See Variable
                  List pp. 4-5
                Format 1 phase card (D6-1) parameters:
                                                        See Variable
                . List pp. 4-5
                See Variable List p. 5
                Match station--phase list: See Variable List pp. 1, 4, 5
```

```
WRITE
BLOCK
       STATEMENT
        NUMBER
                 Results on preliminary hypocenter from PREHY:
          208
                  Variable List pp. 5, 6.
                 Results from TRVDRV and arrival-time residuals: See
                   Variable List pp. 8-10
                 Location of hypocenter, and statistical parameters: See
                   Variable List pp. 8-10
                 Coefficients and constants in normal equations plus range
                   in \partial T/\partial z , RAH, and INST value: See Variable List p. 10
                 Results of HYCOR subroutine: See Variable List pp. 10-11
                 Corrected hypocenter and adjustments applied: See Variable
                   List pp. 6, 10, 12
                 Condition codes plus "S-P origin time," average residual,
          485
                   and mean P-magnitude: See Variable List
                 Summary card printout: See Variable List, especially
                   pp. 8, 10, 12, 13
                 Station data printout: See Variable List, especially
                 . pp. 8, 10, 12, 13
```

BLOCK	WRITE STATEMENT NUMBER	
P1	{ 491	Card punch summary card: cf
P2	{ 499	Card punch station data card: cf 12
R1	{ 149	Printout indicating phase cardstation card matching failure
R2	174	Printout indicating too little data for locationthis condition can result from event receding from net until too many stations have G-weights = 0
SI	274 275 276	Printout for special "solution" in which program is used to compute traveitimes, derivatives, etc., for a specified focus and model
S2	353	Printout for the VELAZ subroutine
XI	541	Printout of statistical data on arrival-time residuals and P- and X-magnitude residuals at individual stations
X2	546	Printout of list of stations that were not used in hypocentral adjustments

Condition Codes

MODE; chooses method of preliminary hypocenter assignment

- = 0 : Put hypocenter at depth ZTR beneath the earliest station
- = 1 : Put hypocenter at depth ZTR beneath the trial epicenter

 (LATR, YATTR, LOTR, XONTR)
- = 2 : Calculate preliminary hypocenter from reduced data set using a half-space model

LHY: identifies the PREHY section used in assignment of the preliminary hypocenter.

- = | MODE = 0; etc.
- = 2 Mode = 1; etc.
- = 3 MODE = 2; 4 station solution for Xo, yo, Zo, to
- = 4 MODE = 2; 3 station solution for \times_o , y_o : t_o computed from S-P data, z_o = ZTR.
- = 5 MODE = 2; 3 station solution for X_0, y_0, t_0 ; $Z_0 = ZTR$ LPC:Card punch instruction

 - = 2 : Punch 1 summary card and 1 separator card
 - = 3 : Punch 2 summary cards, 1 station card per station, and1 separator card
 - = 0 : No card punch output

INST; Controls type and number of solutions for a single earthquake

- = 0 : FREE solution; adjust X,4,7,7,t.
- = 1 : ZFIX solution; adjust x, y, to
- = 2 : Trix solution; adjust X.,40,70

- = 4 : first.a ZFIX solution, second a FREE solution
- = 5 : first a TFIX solution, second a ZFIX solution
- = 6 : first a TFIX solution, second a ZFIX solution, third a FREE solution
- = 8 : go to subroutine VELAZ
- = 9: Printout first TRVDRV results and other data recording
 parameters of hypocenter and statistics of residuals

LOSW: indicates availability of S-P origin .time

- = 0 : ORGS not available
- = 1 : ORGS available

KOUT; identifies the HYCOR routine used in the last adjustment of the hypocenter.

- = 1 : Free adjustment of all variables
- = 2 : ZFIX adjustment of x_0, y_0, t_0 only
- = 3 : TFIX adjustment of X, 4, 20 only :
- = 4 : ZFIX TFIX adjustment of X., y. only

KAZ indicates which VELAZ routine was used

- = 0 : VELAZ not used
- = 1 : 3-station solution for velocity and azimuth only
- = 2 : least-squares adjustment of velocity and azimuth

Appendix 3

Data card variables, and a short explanation of their use and significance.

```
"NSTA" list--one per station
DI.
    NSTA(1.L)
                 Station L name
    LAT(1,L)
               Station L latitude (degrees) -
    YAT(1,L)
               Station L latitude (minutes)
    LON(1,L)
               Station L longitude (degrees
    XON(1,L)
               Station L longitude (minutes)
                Station L elevation (meters)
    EL(1,L)
    DLY(1,L)
                Station L delay (seconds)
    MDL(1,L)
                 Crustal model to be used with station L
    Model 1 list
D2.
                 Velocity in layer L (km/sec)
     V1(L)
     DP1(L)
                 Depth to top of layer L (km)
D3.
    Model 2 list
                  Velocity in layer L (km/sec)
     V2(L)
     DP2(L)
                  Depth to top of layer L (km)
D4.
     Parameter card 1
                  Trial hypocenter latitude (degrees)
     LATR
     YATTR
                  Trial hypocenter latitude (minutes)
     LOTR
                  Trial hypocenter longitude (degrees)
     XONTR
                  Trial hypocenter longitude (minutes)
     ZTR
                  Trial hypocenter depth (km)
                  Latitude reduction (degrees)
     LARED
     LORED
                  Longitude reduction (degrees)
     DELAZ .
                  Distance (in km) to nearest station beyond which VELAZ
```

subroutine is called

VB

Half-space velocity used in MODE = 2 solution (below).

MODE

- 0, 1, 2 Keys mode of PREHY hypocenter determination
- 0 preliminary hypocenter placed at depth ZTR beneath nearest station
- 1 "trial" hypocenter assigned
- 2 preliminary hypocenter computed from 4 (or 3) selected stations on the basis of a uniform half-space model

LPC

- 0, 1, 2, 3 Keys punch-card output
- 0 no cards punched
- I cards punched
- 2 summary cards and \$\$\$\$ only
- 3 duplicate summary cards, station cards, and \$\$\$\$

INPRIN

- 0 (or blank), 1, 2, 3, 4, 5
- Different output levels can be obtained by use of different INPRIN commands. The levels range from final results only (0) to step-by-step printout of the results of read and calculate operations (5).
- O Hypocenter summary and station summary list
- i + "NSTA" station list, parameters, and model lists
- 2 + "MSTA" phase list
- 3 + PREHY hypocenter, and adjustment data (1/iteration)
- 4 + Time and derivative lists (first 3 iterations)
- 5 + TPAR arrays and match-list
- (Do not use "5" if NLI or NL2 > 10; 888 FORMAT inadequate)

IFMT Indicates "MSTA" phase list format that will be used

1 "HYPOLO" format

2 "HYPOLAYR" format--provides for weighting of reading and for independent calibration for S and max (X).

DX1 Test values needed in the section providing a statistical summary of individual station time and magnitude residuals

TAAF If AAF > TAAF earthquake is skipped

TFR If $F(J) \gg TFR$ γ station is skipped in section

If $W(J) * G(J) \leq TWR$) on traveltime residuals

AMTST If EPMG(J) > AMTST, station is skipped in section on

P-mag residuals

AMTST If | EXMG(J) | > AMTST, station is skipped in section on

X mag residuals

IIT If II > IIT, earthquake is skipped

KTTA if KSTA KTTA, earthquake is skipped

KOMIT Number of stations (listed on card DX2) that are to be

ignored in the determination of the hypocenter but

treated normally otherwise.

DX2 List of stations to be ignored as specified under "KOMIT" above

D5 Parameter card 2

KOLT In order of increasing P-arrival times, stations 1 through

KOLT are considered in the selection of stations for

use in calculating the preliminary hypocenter, in PREHY,

and in calculating the preliminary velocity and azimuth

in VELAZ.

SMP To calculate P traveltimes from measured S-P intervals,

the equation P - 0 = SMP * (S-P) is used. If Poisson's

ratio is 0.25, SMP = 1.37.

XNEAR (km) For DELTA(I) < XNEAR, the distance—dependent weighting factor, G(I), is 1.0.

XFAR (km) For DELTA(I) > XFAR, G(I) = 0.0. For XNEAR < DELTA(I) < XFAR, G(I) = 1.0 - (DELTA(I) - XNEAR) / [(XFAR - XNEAR) / 0.9]

HILO . Sensitivity ratio between high and low channels on playback (if same calibration is used for both levels).

CNST Proportionality constant used in reducing record amplitude to ground amplitude.

PWRP Exponent of hypocentral distance used in the calculation of "P" magnitudes

ZPMAG . Reference constant used in calculation of "P" magnitudes.

PWRX Analogous to PWRP, but for X phase.

ZXMAG Analogous to ZPMAG, but for X phase

AVLT Small value for AVR (average residual) used in solution convergence tests.

AFLT Small value for AAF (average absolute residual) used in solution convergence tests

AFLP Second small value for AAF (average absolute residual)
used in solution convergence tests

ADLT Small value for DAAF (change in AAF) used in solution convergence tests

ADLP Second small value for DAAF (change in AAF) used in solution convergence tests.

```
06.
     (D6-1 = HYPOLO format; D6-2 = HYPOLAYR format)
     MSTA(L)
                  Station L name
                  Station L P-phase description (e.g., 1 P+)
     QSABE(L)
     KDATE(L)
                  Date (e.g., 68 02 24 - year, month, day)
     JHR(L)
                  Time (hour, e.g., 13)
     JMIN(L)
                  Time (minutes, e.g., 27)
     P(L)
                  Arrival time of P at station L (seconds)
     AMP(L)
                  Peak-to-trough max P record amplitude (mm)
                  Period of max P-phase (seconds)
     PRP(L)
     S(L)
                  S arrival time (seconds)
     AMS(L)
                  S amplitude (peak-to-trough mm)
     PRS(L)
                  S period (seconds)
                  "Max" phase amplitude (peak-to-trough mm)
     AMX(L) .
     PRX(L)
                  "Max" phase period (seconds)
     W(L)
                  P-wave phase weighting factor (seconds)
                                 0.75. 2
                       1.0. 1
                                            0.50.3
                                                       0.25, 4 0.0
                  Peak-to-trough record amplitude (in mm) resulting from
     CALP(L)
                    a 10 V calibration signal--on Z channel
     CALS(L)
                  Calibration, but on channel recording S
     CALX(L)
                  Calibration, but on channel recording Max
     RK(L)
                  Remarks (in 3 alphmeric symbols)
     DT(L)
                  Chronometer correction (seconds)
D7. Final card in phase list group (one per earthquake)
                  0 (or blank), 1, 2, 3, 4, 5, 6, and 9.
     INST
                  Special instruction on constraints to be placed on
                    hypocenter determination.
```

- 0 FREE solution
- I ZFIX (restrict depth to ZRES)
- 2 TFIX (restrict origin time to that computed from S-P data)
- 3 First TFIX, then FREE
- 4 First ZFIX, then FREE
- 5 First TFIX, then ZFIX
- 6 First TFIX, second ZFIX, third FREE
- 9 Requires program to compute only traveltimes, residuals, etc., for a specified focus (MODE = 1), with no subsequent adjustment of focus.
- (km) Depth at which hypocenter is restricted under the INST equal i, 4, and 6 commands.

Data Deck Set-Up

DI (Station list) Blank 02 (Model I) Blank D3 (Model 2) Omit for 1 - model case Blank Param 1 **D4** Param 2 **D5** If required DX1 DX2 If required D6-2 (Phase cards) instr card (can be blank) **D7** D6-2 **D7** D6-2 **D7** 06-2 **D7**

1 2...10 11 12 13 14 15 } "Go to STOP" card

1*

END

SUBROUTINE TPAR

Load subroutine with modelal parameters: boundary depths and layer velocities DPI(K), YI(K)

Calculate layer thicknesses, THK(K)

Compute intercepts TID(K,4) and critical distances DID(K,4) for refracted waves from focus on boundary K and refracted along boundary 4: K=1,N4; L=K,N4

Transfer results from subroutine working arrays to storage arrays: THKI(K),
TIDI(K, L), DIDI(K, L); K=1,NLI; L=K,NLI

Return to beginning; load subtoutine with model #2 parameters; repeat calculations to obtain model #2 arrays; transfer model #2 results to storage arrays: THK2(K), TID2(K,H), DID2(K,H); K=1,N42, L=K,N42

SUBROUTINE PREHY

SUBROUTINE HYCOR

SUBROUTINE MAGNITO

Assign "not computed" flags to "P" and
"X" magnitude residuals.

Remove "-" flags from low-level

trace amplitude values.

Initialize counters and registers.

Calculate (hypocentral distance)2

Calculate individual station
P-magnitudes; or set "not computed"
flag if data are inadequate
for magnitude computation

Calculate individual station.

X-magnitudes; or set "not-computed"
flag if data are inadequate,
for magnitude computation

Compute mean P-magnitude. Compute mean X-magnitude.

Compute individual station
P-magnitude anomalies.
Compute individual station
X-magnitude anomalies.

RETURN

•	PROGRAM HYPOLAYR (1/13/69	(1/13/69 - 9 PEaton)
, ~	R DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,9 EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSAB JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS	
	RX(99),AMX(99),RK(99),DT(99),CALP(99),CALS(99) X(99),DY(99),DELTA(99),T(99),AX(99),AY(99),AH(Dimension, common, and type
	PMAG(99),AI(99),BI(99),XH(99),TH(99),DIS:I(99),H TS(99),AZ(99),V(26),DP(26),THK(26),TID(26,26),DI	
	DIDJ(26),TR(26),V1(26),DP1(26),THK1(26),TID1(26,2 V2(26),DP2(26),THK2(26),TID2(26,26),DID2(26,26),A	block that is reproduced
. ·	C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KD(99),XX	
	DMMON NSTA.LAT.YAT.LON.XON.EL.DLY.MDL.MSTA.W.QS	In all of the subscutimes
. (JHIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CA	
•	P. THK, TIO, DID, TINJ, DIDJ, TR, VI, DPI, THK1, TID1, DID	
•	COMMON/UNDM/HILD:CNST:PWRP:ZPMAG:PWRX:ZXMAG:KT:K	
•	KSITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LOR	
	XEP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LO	
US .	AL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP	
•	DIMENSION MPC(99), SCOF(99), SCOF2(99), AVRES(99), SD	
	EMP(99), GW(99), MPCP(99), SCDY2(99), SCDP2(99), AVR EMP(99), MPCX(99), SCDX(99), SCDX2(99), AVR EX(99), S	Dimension and dara startment
~	DATA MPC/99*0/,SCDF/99*0.0/,SCDF2/99*0.0/,AVRES/9	tor the statistical section
	COP2/99*0.0/, AVREP/99*-9.99/, SDREP/99*-9.99/;	of the main program
	MPCX/99*0/,SCOX/99*0.0/,SCOX2/99*0.0/,AVREX/99: SDREX/99*-9.99/,SEMX/99*-9.99/	
\$	ORMAT(1HO,5X, CODES (MODE LPC INST LOSH LHY KOUT	
•	I2,"]",5x,"URGS=",F7.2,5x,"AV RESIU=",F7.2,5 ORMAT(2x,A4,F2.0,F5.2,lx,F3.0,F5.2,lx,F4.0,l	
10	FORMAT(F7.3,F7.3)	-
H	FORMAT(3x,F2.0,1x,F5.2,2x,F3.0)	
12	16 FORMAT(12,3X,F5.2,2F5.0,9F5.2,2F5.3)	
13	RMAT(A4,A3,F2.1,I6,ZI2,F5.2, 4.1.A3.F5.2)	
14	(F2. 1, A4; A3, I	
) }	1F3.2,5X,F4.1,A3,F5.2)	Collection of format
) }	AT(5%,16,2%,212,2%,A4,1%,"NOT ON STATION LI	
17	8 FORMAT(4X, DATE, 4X, ORIGIN, 7X, LAT, 9X, LONG, 6	state wents
	1"AAF",4X, SDP", 3X, "SDX", 3X, "SDY", 3X, "SDZ", 3X, "SDT"	
- .	,3X,"XMAG",3X,"II",2X,"KREC",3X,"VH")	
3	TIKMAI 13X.10.1X./1/.FO./.FO.U.FO.U.FO./.FI.O.	

20 20 20 20 20 20 20 20 20 20 20 20 20 2	1F6.2,3x,12,F8.2,3x,12,3x,12,3x,F6.2,3X/) 755 FORMAT(16,212,F5.2,F3.0,F5.2, F4.0,F5.2,F5.1,2F5.2,3F5.1,F5.2) 758 FORMAT(10x,'STATION',2x,'DELTA',3x,'AZI',3x,'ANIN',2x,'QSABE',2x,'1*TP',6x,'TS',4x,'RESID',3x,'PMAG',2x,'RSPMG',3x,'XMAG',2x,'RSXMG',2x,'RMK',3x,'W',5X,'G') 760 FORMAT(12x,A4,F6.1,2x,F5.0,1x,F6.1,3x,A3,1x,F6.2,2x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F6.2,1x,F5.2,1x,F5.2) 765 FORMAT(6x,A4,F6.1,F5.0,F6.1,A3,4F6.2,A3,2F5.2,13x) 770 FORMAT(7///) 780 FORMAT(5x,16,1x,212,F5.2,3x,'STN',3x,'RESID',3x,'TH1(1)',2x,'1*AZEP=',F8.2,1x,'VBAR=',F7.2,1x,'AAF=',F5.2,1x,'STNS N,F,X=',	
N	2A4, 1X, A4, 1X, A4, 1X, "KAZ=", Il, 1X, "II=", I 2, 1X, "KT=", I 2); 782 FORMAT(23X, A4, 2X, F6, 2, 2X, F7, 1, 2X)	
26 27 28 Di	L=L+1 READ(5,710) NSTA(1,L),LAT(1,L) IEL(1,L),DLY(1,L),MDL(1,L) IF(LAT(1,L))40,42,40 KSTTE=1-1	Read list of stations and station parameters
w w w (DO 44 EL(1,	Convert station elevations from meters to kilometers
34 35 36 D2 38	45 L=0 46 L=L+1 READ(5.712) V1(L),DP1(L) IF(V1(L) .GT. 0.01)GD TD 46 47 NL1=L-1	$\boldsymbol{\mathcal{Q}}$
39 40 41 D3	L=L+1 READ(IF(V2	Read crustal model #2
45 DH	50 READ(5 IF (QQ IF (PP READ(5	Read
6 00 00 00 00 00 00 00 00 00 00 00 00 00	00 IE(ISTS E0 0) 60 TO 81 RUHIT=0	cards
5 1 DX)	802 IF (1515 .eq. 0) GU 10 819 803 READ(5,809) TAAF,TFR,TWT,AMTST,IIT,KTTA,KOMIT 809 FORMAT(4F10.3,315)	(Parameters for) statistical section)

	# 0	88 8
	<pre>IF(NL2 .EQ. 0) GO TO 57 WRITE(6,889)(THK2(J),(TID2(L,J),L=1,6),(DID2(L,J),L=1,6), 1.1=1.6)</pre>	83
TPAR arrays	FORMA GO TO WRITE	79 80 81
Optional printout of	<pre>1J=1,10) If(NL2 .EQ. 0) GO TO 57 WRITE(6,888)(THK2(J),(TID2(L,J),L=1,10),(DID2(L,J),L=1,10), 1J=1,10)</pre>	77 78
		•
	F(NL1 .LT. 7 .AND. NL2 .LT., RITE(6,888)(THK1(J),(TID1(L,	75 76
subroutine to calculate arrays used in the TRYDRY subroutine	2 CALL TPAR IF(INPRIN .LT. 5) GO TO 57 IF(NL1 .GT. 10 .GR. NL2 .GT. 10) GO TO	72 74
	ITE(6,843) (V2(L), RMAT(10X,F10.3,F10	70
•	FUNDA (1100) (000) (1	> 6 0 0 0
parameters	5 • 50 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	6 6 6 6
STATION IIST ANA	AT (10X, 213, F6, 0, F8,	63
	LPC, INPRIN, IFI (6,862)SMP, XNI AFI T. AFI P. ADL	62
Optional printout of	(10x, A4, F4.0, F7.2, 3x, F5.0, F7.2, 842) NL1, NL2, LATR, YATTR, LOTR,	60
	,841) (NSTA(1,L),LAT(1,	55 0 90
	51 WRITE(6,840) KSITE	57
(in hypocenter adjustments)	804 READ(5,811) (NOMI 811 FORMAT(1X, A4) 813 IF (INPRIN - LT- 1	54 DX2
	COURT ED ON CO TO 91	n 3

67		
DO 60 J=1, RREC OLUMINA GLUI-10 GLUI-11-0	F(KREC .LT. 3) GD T HR=24	
CALSIJ-CALPIJ) CALSIJ-CALPIJ CALSIJ-CALPIJ IF (JRRI) : LT. 11R1 11R-JRRIJ ELCALPIJ	0 68 J=1, KREC	
CALKUISCAPPI) IF (MRKI) : LT. [HR] [HR=JHR[J]) FF (MRKI) : LT. [HR] [HR] [HR] FF (MRKI) : LT. [HR] FF (MRKI) : LT	(J)=1+0-11J1J7+0	•
CALXIJ-CALPIJ IF (JHRIJ) - LT. IHR IHR-JHR(J) 68 CONTINUE 69 DO 82 J-1 KREE 10 DO 82 J-1 KREE 10 DO 83 J-1 KREE 10 DO 80 J-1 KREE 10 DO 81 J-1 KREE 10 DO 80 J-1 KREE 10 DO 80 J-1 KREE 11 LEO. KSIA(1,11) 12 LAT(1,1) LON(2,1) - LON(1,11) 13 LON(2,1) - LON(1,11) 14 LON(2,1) - LON(1,11) 15 LAT(2,1) - RAT(1,11) 16 LOO 81 17 LAT(2,1) - RAT(1,11) 18 LOO 10 11 19 LOO 11 1	ALS(J)=CALP(,
DECENTING BOTO BY JELKREE BOTO BY JELK	ALX(J)=CALP(J)	
69 DE 2. J. KREE 69 DE 2. J. KREE 16 H8TAAJ	8 CONTINUE 8 CONTINUE 1 T (JHK(J) • C(• 1HK) 1HK=JHK(
DO BO I=1,KSITE IF (MSTAI) = EQ. KSITE GO TO 85 17	9 DO 82 J=1, KREC	
	DO 80 I=1,KSITE	
TI GO TO SOC. 131 LAT(1,1) LAT(1,1) LAT(1,1) LAT(1,1) LAT(1,1) LAT(1,1) AND CONTINUE SCOTORS. 131 MATCH pliase and pliv(2,1)=NOL(1,1) MOL(1,1) MOL(IF(MSTA(J) .EQ. NSTA(I,I)) GO TO 7	•
Tarica, Jacaria, 1) Lone 2, Jacaria, 1) Lone 3, Jacaria, 1, J	TO TO BO	-
LON(2,1)=LON(1,1) VAT(2,1)=XAT(1,1) XON(2,1)=XAT(1,1) XON(2,1)=XAT(1,1) XON(2,1)=XAT(1,1) XON(2,1)=XAT(1,1) XON(2,1)=XAT(1,1) XON(2,1)=XON(1,1) EL(2,1)=EL(1,1) Station lists Station lists Station lists Station lists Continue GO TO 82 BO CONTINUE GO TO 87 GO TO 87 BO TO 88 BO TO 88 BO TO 89 BO TO 81 BO T	LAT(2,J)=LA	
VATI2, J=VAI(1,1) VARI2, J=VAI(1,1) EL (2, J)=EL (1,1) EL (2, J)=EL (1,1) NEL (2, J)=NO(1,1) EL (2, J)=EL (1,1) EL (2, J)=NO(1,1) EL (2, J)	LON(2, J) =LO	
DEVICE JOECH 111 BELIZIJEE (111) HDLLIZIJENDILIA 11 GO TO 87 BO BO TO 88 BO BO SET "O" weight for state on the "Onlet" list on the	(2,J)=	-
EL(2,1)=EL(1,1) ND(12,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) NSTA(2,1)=ND(11,1) SOTO 87 CONTINUE GO TO 87 SOTO 87 Reset gacke it sin on phase its not on station list go TO 87 SOL OF SOTO 97 NSTA(2,1)=NSTA(1,1) Sot on station list sin not on station list go TO 87 Sol selected switches, sum registers, and counters LICO OSUM=0.0 ORGS=0.0 LICO OSUM=0.0 OCALCULATE Station list counters Sot is not on station list sum registers and counters Calculate treduced) Partival and set up ordering array Calculate treduced) Partival and set up ordering array Calculate treduced) Partival and set up ordering array IF(NONTTINUE Sot "O" weight for station list on the "ONIT"	(2,J)=DL	phase
NOL(2,J)=NOL(1,II) STATE(3,J)=NSTA(1,II) GO TO 82 BO CONTINUE GO TO 87 BO TE 64,772) KDATE(J), JHR(J), JMIN(J), MSTA(J) Reject guake if sin on phase is shall be for the station list of to 87 BO TO 88 BO TO 815 Calculate a vertical particularity on the "chit" list on t	2, J)=EL (
GO TO 82 BO CONTINUE BO CONTINUE BO TO 87 BY HITE 66,772) KDATE (J), JHR (J), JHIN (J), MSTA(J) Reject garke it ston on phase is is not on station list go TO 87 BY HAITE 66,772) KDATE (J), JHR (J), JHR (J), MSTA(J) BO TO 87 BO BO TO 88 BO TO 87 BO BO TO 80 BO BO TO 80 BO TO	TA(2,J)=MU	
80 CONTINUE 82 CONTINUE 82 CONTINUE 83 CONTINUE 84 RITE(6,772) KDATE(J), JHR(J), JMIN(J), MSTA(J) 85 HRITE(6,770) 86 TO 87 87 LOSM=0 COUNTINUE 88 HRITE(6,770) 89 HRITE(6,770) 80 TO 87 FOR TO 88 FOR TO 815	10 82	
82 CONTINUE 83 CONTINUE 84 CONTINUE 85 HRITE(6,7721) KDATE(J), JHR(J), JMIN(J), MSTA(J) Reject guake if str on phase is 85 HRITE(6,7721) KDATE(J), JHR(J), JMIN(J), MSTA(J) Reject guake if str on phase is 86 TO 97 Set selected switches, 90 UN=0.0 90 PS J=1, KREC 15 COULLEO Calculate (reduced) Parrival 4 And set up ordering arra- 16 CONTINUE 17 (NOMIT(K) .NE, MSTA(J)) GO TO 815 18 If (MI)=0.0 19 UC=LHC+1 16 ONT (NOMIT) (J) - SMP*(SU)-P(J)) 17 (J) - SMP*(SU)-P(J)) 18 UC=LHC+1 19 ORGS=TP(J)-SMP*(SU)-P(J)) 19 ORGS=TP(J)-SMP*(SU)-P(J))	CONT	
Reject garke it stoon phase is HRITE(6,772) KDATE(J), JHR(J), JHRN(J), MSTA(J) HRITE(6,770) GO TO \$7 B7 B7 LOSH=0 OSUH=0.0 ORGS=0.0 LL=0 LL=0 LL=0 LC=0 LC=1 IF (NONIT LC=1 AC LC=1 A	CONT	
HRITE(6,770) GO TO \$7 B7 LOSH=0 OSUM=0.0 OSUM=0.0 ORGS=0.0 LL=0 LL=0 LL=0 LHC=0 LHC=1.3+KREC TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JNIN(J))+P(J)+DT(J) TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JNIN(J))+P(J)+DT(J) And set up ordering array GA(CALCALC+1 And set up ordering array GA(CALCALC+1 And set up ordering array on the "ONIT" list on the	WRITE(6,722) KDATE(J), JHR(J), JMIN(J), MSTA(phase
87 LOSH=0.0 OSUN=0.0 OSUN=0.0 ORGS=0.0 ORGS=0.0 ORGS=0.0 ILC=0 LLC=0 LLC=0 LLC=0 LHC=0 LHC=0 LHC=0 LHC=0 LHC=0 LHC=0 LHC=0 LHC=0 LHC=0 Counters and counters Calculate (reduced) Parrival and set up ordering array GH(J)=F(J) F(J)=F(DAT(3600*(JHR(J)-IHR)+60*JMIN(J))+P(J)+DT(J) And set up ordering array GH(J)=F(J) GH(J)=H(J) Set "o" weight for state on the "onit" list H(J)=0.0 If (NOMIT(K) .NE. MSTA(J)) GD TO 815 If (NOMIT(NUE SIF(H(J)=0.3)95,95,89 BIF(H(J)=0.3)95,95,90 ORGS=TP(J)-SMP*(S(J)-P(J)) If Presight <0.3, Ignore 5-P and 15-P(J)-SMP*(S(J)-P(J))	WRITE(6,770)	
ORGS=0.0 ORGS=0.0 CRGS=0.0 CRGS=0.0 CRGS=0.0 CRGS=0.0 CRGS=0.0 CRGS=0.0 Sum registers; and sum registers; and counters Calculate (reduced) Particularity and set up ordering arrainable in the "on weight for state on the "on the "one state on the state of	7 LOSH=0	
LL=0 LHC=0 LHC=1 L	SUM=0.	Selected
LHC=0 DD 95 J=1, KREC DD 95 J=1, KREC Calculate (reduced) Parrival TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JMIN(J))+P(J)+DT(J) TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JMIN(J))+P(J)+DT(J) GH(J)=H(J) GH(J)=H(J) IF(KOMIT .EQ. 0) GD TD 88 IF(KOMIT .EQ. 0) GD TD 88 DD 815 K=1, KOMIT IF(NOMIT(K) .NE. MSTA(J)) GD TD 815 H(J)=0.0 15 CONTINUE B8 IF(H(J)-0.3)95,95,89 16 (S(J))-95,90 17 COULTELLO THE "ON the "ONIT" // 15t FIGURE STATE ON the "ONIT" // 15t If P-weight <0.3, 19 nore 5-P a ON CS-TP(J)-SMP*(S(J)-P(J))	RGS=0.	
DD 95 J=1, KREC TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JMIN(J))+P(J)+DT(J) TP(J)=FLOAT(3600*(JHR(J)-IHR)+60*JMIN(J))+P(J)+DT(J) and set up ordering array. and set up ordering array. Set "o" weight for state DO 815 K=1, KONIT IF (NOMIT(K) .NE. MSTA(J)) GD TO 815 H(J)=0.0 15 CONTINUE 16 (S(J)=90.95,90 90 OPGS=TP(J)-SMP*(S(J)-P(J)) The produced of partival and set up ordering array. Set "o" weight for state on the "OAILT" list If Pweight <0.3, ignore S-P a If (S(J)=90.95,90 If Pweight <0.3, ignore S-P a	U S	counters
PT(J)=H(J) GH(J)=H(J) IF(KDNIT .EQ. 0) GD TO 88 IF(KDNIT .EQ. 0) GD TO 88 Set "O" weight for state on the "Onlt" list IF(NOMIT(K) .NE. MSTA(J)) GD TO 815	())=F OAT(3600*(JHR(J)-THR)+60*JMIN(J))+P(J)	ulate (reduced) pa-
GH(J)=H(J) IF(KOMIT .EQ. 0) GO TO 88 Set "o" weight for state to proper stat	(J)=TP(J)	Succession du 12c
DO 815 K=1, KOMIT IF (NOMIT(K) .NE. MSTA(J)) GO TO 815 H(J)=0.0 15 CONTINUE 88 IF (N(J)-0.3)95,95,89 1F (S(J))90,95,90 90 OPGS=TP(J)-SMP*(S(J)-P(J))	(J)=W(J)	
IF (NOMIT(K) .NE. MSTA(J)) GO TO 815 H(J)=0.0 15 CONTINUE 88 IF (W(J)-0.3)95,95,89 89 LWC=LWC+1 IF (S(J))90,95,90 90 OPGS=TP(J)-SMP*(S(J)-P(J))	BIS K=1.KOMIT	"O" weight for
H(J)=0.0 15 CONTINUE 88 IF(N(J)-0.3)95,95,89 89 LHC=LHC+1 IF(S(J))90,95,90 90 OPGS=IP(J)-SMP*(S(J)-P(J))	(NOMIT(K) .NE. MSTA(J)) GO TO 81	"CNIT"
88 IF(W(J)-0.3)95,95,89 89 LWC=LWC+1 IF(S(J)190,95,90 90 OPGS=IP(J)-SMP*(S(J)-P(J))	N(J)=0.0	
1F(S(J))90,95,90 O ORGS=TP(J)-SMP*(S(J)-P(J))	88 IF(H(J)-0,3)95,95,89	eroubs
0 QPGS=TP(J)-SMP*(S(J)-P(J))	IF(S(J))90.95.90	
Calculate ST, origin	O DRGS=TP(J)-	Calculate S-P origin time

oint for is solutions

117	OSUM=OSUM+ORGS LL=LL+1	for station J
ノししし	IF(LWC- S6 WRITE(6 WRITE(6	If fewer than 3 stas have P-weights >0.3, reject quake
178 178 180	97 XLL=	Calculate average 5-P origin time and flag its availability
\$ \$\omega\$	99 IF(LWC •LT	
188	3 PTMN=9999.0	
ر بر د 0 00 (DO 104 J=1, KREC	"Order" earliest KOLT
183	102 IF (PT(J)-PTMN) 103	greater than 0.3 in order
190	104 CONTINU	of increasing P-wave
192	PTC:	arrival times
19:	105 CONTI	
190	PMI MFA	the corresponding arrival tunes
198	PFAR=TP(MF KALX=MFAR	Define KALX temporarily
1 99 200	IF(INST .EQ. 8) GO TO 185	INST = 8 directs solution tothe
201 202	113 IF(INPRIN .LT. 5) GO TO 115 114 WRITE(6,848) IHR,MSTA(NEAR),LOSW,PMIN,ORGS	
204	1'PMIN=',F8.2,2X,'ORGS=',F8.2) WRITE(6.849) [MSTA(1).NSTA(2.1).IAT(2.1).YAT	phase and station lists
205	1XON(2,L),DLY(2,L),EL(2,L),MDL(2,L),TP(L),849 FORMAT(10X,A4,2X,A4,F4.0,F7.2,2X,F5.0,F7.	
206 207	115 CALL PREHY IF (INPRIN _ LT_ 3) GO TO 118	Subrentine to fix preliminary
	116 WRITE(6,850) MUDE, LHY, LATEP, YATEP, LONEP	Optional printent of the
209	850 FORMATITOX, MODE=1, 12, 2X, LHY=1	preliminary hypocenter
14	/ . N. T. X . W JX . T4 . () . T/ . / . ZX . T5 .	

	IF(DELTA(I)	
distance before the 5th iteration.	IF(II .LT. 5) GO TO 148 139 DO 145 I=1,KREC	
	#0.0 M=0.0	
	KSTA=0	
Set switches, counters, and	ASUM=0	
	138 AAF1=AAF	
incidence at the focus	132 CAL	
Subscriting to calculate traveltimes, descriptions and anales of		
event is too far from network		
Go to 1'ELAZ voutine if	236 131 IF(DELMN .GT. DELAZ .AND. II .GT. 5) GO TO 185	
	130 CONTINUE	
	IF(DELTA(I) .LT. DELMN) DELMN=	
•	127 DELTA(I)=SORT(DX(I)+DX(I)+DY(I)+DY(I))	
•	12	
. • .	DY(I)=(60.0*(LAT(2,I)-LARED)+YAT(2,I)-Y	
and determine smallest one.	DX(I)=(60.0*(LON(2, I)-LORED)+XON(2, I)-XEP)	
calculate checitival mistraces	PP=PPP*COS(ZLAT)	
Colored a supplied of the color	227	
•	DELMN=999, 99	-
•••	YEP=60.0*(L	
	XEP=60.0*(LONEP-LORED)+XONE	
	222 125 THITH	I
	t 220 123 INST#4	len dra
	A 219 60 T	atec 1 P
	218 122 INST#1	91.8 914
controlling repeated solutions.	217 121 IF(INS	y É
Manyulation of switches	1.07. FUNK .FR. 17	
	(INST .EQ. O .OR. INST .	- disille
		- 1 - 1 - 1
	2 2	
computation of the distance "weighting sucher	210 118 DEDN= (XFAK-	Entr rep ^s
	2A40 1X0 A40 1X1 A4/1	7.1
		; ;

293	29 1	290	289	287	28 5	284	∞ .	28 2	0	7	278	1-1		275	274	~	27 2	4 -	10	O	0	ס ת	, W	Ġ.	5 (261 200	· v	S	S	S	7 5	J	S	250
ORG=OR	157 II=14	60 T	1	2 FORMAT(10X, 3F8.2, 2F8.3, 2X, 13, 2X, 2F8.3)	. WRITE(6.852) YEP.XEP.Z.AAF.DAAF.KSTA.	1 FORMAT(10x, A4, F7.2, 6F8.3)	WRITE(6,851) (MSTA(L),	1 IF(11 .GT. 3) GO T	(II GT. 12) AVR=AVR1	60 10 57	31A) A3 1A1 -1 - 13F0+ T1	19 WRITE(6,620) AAF,AVR,ANF,XSTA, WSTA	1F(L), L=1, KREC)	617 WRITE(6,851) (MSTA(L),DELTA(L),T(L),AX(L),AY(L),AH(L),ANIN(L),	ITE(6,850) MODE,LHY,LATEP,YA	(INST .NE. 9) GO TO 630	FHAN	ACTACT ACC	VR=BSUM/XSTA	F=ASUM/XSTA	STA=FLOAT(KSTA)	TELECTA IT 3) GO TO 96) >	TA=WSTA+WT	I=H(I)	PACM=PACM+FAT)	TA=KSTA+1	IF(F(1)=TP(1)-T(1)-DLY(2,1)-DRG	00 15	144 GCLISTON	60 10 1	(1)=0.0	141 G(I)=1.0-(DELTA(I)-XNEAR)/DEDN
of origin time	That indicating termination of a stationary		Flag indicating termination after 12 repares	and statistical parameters	Optional printout of ambient focus		traveltimes, derivatives, etc.	A +	Restore 12th iteration NVR for printent		and origin time	residuals for a specified focus.	of incidence at the focus as well as	travoltimes, derivatives, and angles	uses program to compute distances,	Printout for INST = 9 option, which			•		7014100	and the second	_	Calculate parameters related			•	•	Calculate arrival time residuals			weighting factor	CHICHIATE MISTENEE - AEPENMENS	

Culculate sange of los	171 IF(AH(I)-AHMX)173,173,172	334
276	0 180 I=1, KREC	332
	MN=+1.0	10
	-	
•	, 3)=A(
•	4, 2) =A(2
-	,2)=	327
	1) = A(1,	2
	3, 1) = A(2
	1)=A(1,	N
	NTINU	N
	B(4)=	Ň
) = B(3) + F(1) *	321
	11	N
	-	-
•		\mathbf{H}
	A(3,4)=A(3,4)+AH(I)+WT	-
	3) = A(316 .
	4)=A(2,4)+AY(I)	315
	3) = A(2,3) + AY(1) +	314
udbecentral relland	2) = A(2,2) + AY(I) * AY(I)	313
language adjustments	1,4)+AX(I)*WT	312
computations of	3) = A(1,3) + AX(I) *	
normal equations with in	2) = A(1,2) + AX(1) +	310
•	1)=A(1,1)+AX(1)	309
Calculate coefficients of	==	308
	7	307
	NT INUE	306
	A(I, J) =0.0	305
	69 J=	304
	1)=0.0	303
	69	302
	VR .GE. AVLT) GO TO 15	
	(II .GT. 8 .AND. AAF	301
•	LABVR .LT. AVLT) GO TO 300	
Increases.	166 IF(II .GT. 8 .AND. AAF .LT. AFLP .AND. ABDAF .LT. ADLP .AND.	300
the number of iterations	TO TO TOO	
joermitting termination change as	TABE .IT. AFLT .AND. ABDAE .IT. ADIT .AN	200
of iterations: Speciale reses	TO ABUSE OF ANT AND ARDAS OF ADIST OF TO	167
1622 202 CONTINUESTON OF TERMINATION	2 ARDAR=ARCIDAARD STOR STOR OF AVET SANDS NOOT SEES	1 000
Total Comments of the state of	AS TERROTA FOR MM, AND ARVE OT AVIT AND	266
	60 TO 138	294

335) AUMNI 76 1 80	
337	74 AHMN=AH(I)	
338	CONTINUE	
946 66£	3) GO TO 18	
341	WRITE(6,853) A(1,1), A(1,2), A(1,3), A(1,4), A	Optional printout of
342	53 FORMAT (5X, 15F8, 4, 2X, 13)	1
34. 3	T 31 CO TO 18	Subroutine to compute
サント サント サント		hypocentral adjustments
946	FORMAT(10X,13,2X,13,F14,10,8F10,4)	und related parameters
347	IF(KOUT .NE	Subjectine to compute velocity and
64 0	PSY=PFI+	
•		
		•
! !		Reduction of solution to stundard
351	90 PSY=PSY-6.28318	format and printout for
352	1 PSY=PSY+57, 29578	
. 225	1PSY, VA, AAF, MSTA(NEAR), MSTA(MEAR), MSTA(KALX), KAZ, III, KT	
354	DO 196 I=1, KREC	
356	٠,	
2 S 2 S 2 S	96 CONTINUE	
359	11.	
361 361	CRG=PMIN-2.0	Reset preliminary hypocenter to
362	70	location of earliest station br
363	XONEP=XON(2, NEAR)	further attempts to find a
ა ი ა ი	YATEP=YAT(2,NEAR)	solution under certain
366 367	KAZ=0	INST controls
. 368	Y3=A85(Y(3))	and the second
369	IF(Z+Y(3) .LE. 0.0 .AND. ABY3 .GT. 0.000001) GD TD 201	. forus above around
	-0.6*2/7(3)	
372	Y(1)=Y(1)*(0.4+0.6*R)	
	=Y(3)*R	to avoid a megative focal depth
275	0+ +0 0) * (+) Y= (4) Y	
	200 KUNEPEKUNEPEKULIPPP	Calculate corrected tocal

													•	R	et	irn j	or ai	rot	her
ر صو صو منو سو	413 411 411 411 410 410 60	;	,	404 406 707	4 4 0 0 0 0 4 0	104 104 104	400	398 8 04	396 397	395	393 865	392 392	986	300	38 <i>6</i>	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38 3	380	377 378 379
050=0.0 0GS=0.0 IF(LOSW 20 IF(XONE	SDT=SDP*SQRT(ASDT) GD TO (315,314,312,313,315), KOUT 312 SDT=77.77 GO TO 315 313 SDT=77.77 314 SDZ=777.7 315 CONTINUE				SORT	SDT=77.77 SDT=77.77	SDY=777-7	P=77.77 X=777.7	XREC=FLOAT(LREC-MM-1) IF(XREC-0.9)305,305,310	TINUE	301 LREC=LREC+1	= "	ESUN#O.O	0 10 125	IF (VH-10.0) 215		RMA	SQRT(Y(1)*Y(1)+Y(2)*Y(2	YATEP=YATEP+Y(2)/QQ 2 = 2 + Y(3) ORG=ORG+Y(4)
						of solution		Calculate statistical parameters						H VH / 10 xm	Block depthadjustment on next iteration	If depth control has been lost, return focus to trial depth at end of 4th iteration	total corrections applied	Horizontal shift from last adjustment	coordinates

	IF (MSTA(J) .EQ.	
	582 X=1.X	464
	ABELI=ABS(E(J))	404
	76 DO 590 J=1 KREC	463
I EXCLUSION OF CALL STATE STAT	75 IF (AAF .GT. TAAF .UR. II .GT. I	462
1	ISTS .EQ. 0 .OR. INST .GT .ZT .CO .CT	461
S-Porisin time for printent	IF (LOSW .EQ. 1) UGS=SEC+USU	9
Subscorting to compute magnitudes from PAX dak	L MAGNTD	459
	70 CONTINUE	458
	AZ (I)	457
_	58 AZ(I)=AZ(I)+6.2831	456
for printout	AZ(I))358,358,3	455
	56 AZ(I)=3.141	454
	60 10 357	453
and encenter-to-station azemiths	54 AZ(I)=-ATAN(DX(I)/DY(I))	452
	(DY(I) .LE. 0) GD	451
	52 TS(I)=TP(I)+(S(I)	450
Commundo Ptraveltimes S-traveltimes	F(S(I))352,353,35	677
	I 1=0.0	877
	TP(I)	447
	4	446
	スエア=スエアー1	445
	IN=KMIN+60	444
	342	443
	XXIV=XXIV-1	442
	=SEC+60.0	441
	IF(SEC)341,350,350	4
	=KHR+IHR	439
	SEC=0RG-3600.0*FHR-60.0*FMIN	438
	Z	437
	KMIN=0RG/60.0-60.0+FHR	436
		435
	HR=OR	434
	0 TO 335	433
	YATEP=YATEP-60	432
	37 LATEP=LATEP+1.0	431
	IF (YATEP	430 .
	n TO 330	429
bristout	YATEP=YATEP+60	428
	ATEP=I ATEP=1.0	427
	30 IFIYAT	426
to conventional format for	0 325	425
	XONE P=XONE P=60	424
0	27 LONEP=LONEP+1.0	423
and longitude of earthquake	5 IF (XONE	422
	0 320	421
	XONEP XONEP+60	420
Restore origin time latitude,	322 LONED LONED -1.0	419

IF (K .EQ. KSITE) CONTINUE IF (ADFJ .GT. TFR MPC(K) = SCOF(K)+1 SCOF(K) = SCOF(K)+1 SCOF(K) = SCOF(K)+1 SCOP(K) = SCOP(K)+1 SCOP(K) = SCOP(K)+1 SCOP(K) = SCOP(K)+1 SCOP(K) = SCOP(K)+1 SCOX(K) = SCOX(K)+1 SC			404 IF(INST .LT. 3) GO TO 57 405 DO 410 I=1,KREC	
IFIK. EQ. KSITE) GO TO 590 CONTINUE CONTINUE	dicks	Write \$\$\$\$ eard to separate event	IF(LPC .EQ. 0) GO TO WRITE(7,777) FORMAT(6X, \$555)	0000
TEXT. SEQ. KSITE) GO TO 590 CONTINUE THADELS. GT. TER. OR. NGJ. LT. THI) GO TO 586 PECKIN-PC(KI-H) SCOP (KI-H) SCOP (KI-H) SCOP (KI-SCOP (KI-H) SCO	nter	Ship lines to separate event on prin	WRITE(6,770)	
TERM SEQ. KSITE) GO TO 590 CONTINUE CONTINUE CRITICAL SCOPINS PELL) SCOPINS SCOPINS PENGLA BERNARS (EPNGLA) SCOPINS SCOPINS PENGLA SCOPINS PENGLA SCOPINS SCOPINS PENGLA SCOPINS SCOPINS PENGLA SCOPINS PENGLA SCOPINS PENGLA SCOPINS PENGLA SCOPINS PENGLA Test for exclusion at station from Penal summary, for this event from Penal summary, for this event from Penal summary, for this event percent summary, for this event from Penal summary, for this		Station-pluse list on card punch	1TP(I), TS(I), F(I), PMAG(I), RK(I), W(I), G(I)	
Tegy for exclusion of station Totalinue Transport of the core (ki+efu) SCOP(Ki+efc(ki+efu)) SCOP(Ki+efc(ki+efu)) SCOP(Ki+efc(ki+efu)) SCOP(Ki+efc(ki+efu)) SCOP(Ki+efc(ki+efu)) SCOP(Ki+efc(ki)) SCOP(Ki+efu) SCOP(Ki+ef	•		IF(LPC .EQ. 0 .OR. LPC .EQ. Z) GO 10 400	\$ \$0 \$ \$0
Test for exclusion of station F(ABE) a GT. TER . DR. HGJ . LT. THT) GD TO 586 PC(K) = PC(K) = PC(K) + PC(K) + PC(K) + PC(K) + PC(K) = PC(K) = PC(K) + PC(K)		Station-phase list on printer	(II), TS(I), F(I), PMAG(I), EPMG(I), XXMG(I), EXMG(I), RK(I)	
IF (K. =EQ. KSITE) GD TQ 590 FRANEY J. GT. TER. DR. HGJ.LT. THT) GD TO 586 MPCIKI SPECIK; MPCIKI SPECIK; MPCIKI SCOP (KI+FLJ) SCOP (KI) SCOP (KI) SCOP (KI+FLJ) SCOP (KI) SCOP (KI) SCOP (KI+FLJ) SCOP (KI) SCOP	द्याप्त		"\$00 1=1,7KEC TTE(6,760)	97
Test for exclusion of station Test for exclusion of station From Empty Sci. Ter Or. HGJ - LI. THI) GO TO 586 From Empty Sci. Ter Or. HGJ - LI. THI) GO TO 586 SCOP(K) = SCOP(K)+F(J) SCOP(K) = SCOP(K)+F(J) SCOP(K) = SCOP(K)+F(J) ABEDPH - GT. AHTSI) GO TO 587 HPCP(K) = HPCP(K) SCOP(K) = HPCP(K) SCOP(K) = HPCP(K) SCOP(K) = SCOP(K) + EPHG(J) SCOP(K) = SCOP(K) + EPHG(J) FROM PMAS summary, for this event HPCP(K) = HPCP(K) ABENP - GT. AHTSI) GO TO 590 HPCX(K) = SCOP(K) + EPHG(J) FROM K- SCOP(K) + EPHG(J) SCONZ(K) = SCOP(K) + EPHG(J) SCONZ(K) = SCOP(K) + EPHG(J) SCONZ(K) = SCONZ(K) + EXHG(J) SCONZ(K)	- S		90 WRITE(6,758)	
TECHNING CONTINUE CONTINUE IF (ABEJ GT. TFR OR. HGJ .LT. THT) GO TO 586 PCCR (K) = SCOF (K) + F(J) + F(J) SCOF (K) = SCOF (K) + F(J) + F(J) ABEDHA ABS (EPHG (J)) SCOP (K) = SCOP (K) + EPHG (J) ABEXHA ABS (EXHG (J) SCOX (K) + EXHG (J) SCOX (K) + S	· · · · · · · · · · · · · · · · · · ·		60 10 372	94
TEKE EQ. KSITE) GO TO 590 CONTINUE CONTINUE TICKNESS COFT FOR OR. HGJ.LT. THT) GO TO 586 HPCIKI=HPCIKI+I SCOPEIK)=SCOF(KI+F(J)) SCOPEIK)=SCOFIKH+F(J) FOR THE ABSENCE FIGURATION IF (ABEPH - GT. AHTST) GO TO 587 HPCP (K)=RPCP(K)+1 SCOPEIK)=SCOPEIK+FHOGUJ FOR AHTST) GO TO 590 HCLC (ABEXM - GT. AHTST) GO TO 390 HCLC - GO. O GO TO SOO TO GO. O GO TO GO	1000 5	Princh daplicate summary it LPC=3	73 KPLUS=0	
TETER SEQ. KSITE) GO TO 590 CONTINUE IFLADEJ .GT. TER .OR. HGJ .LT. THT) GO TO 586 #PCCIKI HDC (K)+1 SCOF (K)+SCOF (K)+F(J) +F(J) SCOF (K)-SCOF (K)+F(J) +F(J) SCOP Z(K)-SCOF (K)+F(J) +F(J) ABEPHABS (EPHG(J)) IFLABEPH .GT. ANTST) GO TO 587 #PCP (K)=HPCP (K)+1 SCOP (K)=SCOP (K)+EPHG(J) SCOP Z(K)-SCOP Z(K)+EPHG(J) SCOP Z(K)-SCOP Z(K)+EPHG(J) SCOP Z(K)-SCOP Z(K)+EPHG(J) SCOP Z(K)-SCOP Z(K)-EPHG(J) SCOP Z(K)-SCOP Z(K)-EXHG(J) SCOP Z(K)-SCOP Z(K)-EXHG(J) FOR THE (6,705) FOR TOTS FOR TOTS	なっ		IF(KPLUS .EQ. 0) GO TO 390	
TE(K. EQ. KSITE) GO TO 590 CONTINUE IF(ADFJ.GT. TFR. DR. HGJ.LT. THT) GO TO 586 MPC(K)=MPC(K)+1 SCOF (K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOP(K)=SCOP(K)+F(J) IF(ABEPM.GT. ANTST) GO TO 587 MPCP(K)=MPCP(K)+1 SCOP(K)=SCOP(K)+EPMG(J) SCOP(K)=SCOP(K)+EPMG(J)*EPMG(J) SCOP(K)=SCOP(K)+EPMG(J)*EPMG(J) SCOX(K)=SCOX(K)+EMG(J) SCOX(K)=SCOX(K)+EMG(J) SCOX(K)=SCOX(K)+EXMG(J) SCOX(K)=SCOX(K)+EXMG(seci		17. AAE, CDP, CDX, CDY, CDY, CDY, KOYA, XMAG, 11, KREC, K HRITE(7, 755) KDAIHI NEAR), KHR, KMAG, 11, KREC, KAIH	
TF(K. EQ. KSITE) GD TO 590 IF(ADFJ .GT. TFR .OR. HGJ .LT. THT) GD TO 586 #PC(K)=MPC(K)+MPC(K)+1 SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) #BEPH=ABS(EPHG(J)) IF(ABEPH .GT. AHTST) GD TO 587 #PCP(K)=MPC(K)+1 SCOP(K)=SCOP(K)+EPHG(J) SCOP(K)=SCOP(K)+EPHG(J) ABENH=ABS(ENG(J)) IF(ABENH .GT. AHTST) GD TO 590 #PCX(K)=SCOP(K)+EPHG(J) ABENH=ABS(ENG(J)) IF(ABENH .GT. AHTST) GD TO 590 #PCX(K)=MPCX(K)+1 SCOX(K)=SCOX(K)+ENG(J) SCOX(K)	· · · ·		IF(LPC .EQ. 3) KPLUS=1	
Test for exclusion of station	ないいな		KPLUS=0	•
Test for exclusion of station seems station for this event station for this event station for this event station for this event station for the seems for this event station for this e			C .EQ. 0) GO TO 39	
The continue of the continue tendent of the continue t	ジョン		,SDP,SDX,SDY,SDZ,SDT,KSTA,XMAG,II,KREC,V	•
TB IF (K . EQ. KSITE) GO TO 590 B2 CONTINUE B2 CONTINUE B3 IF (ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 586 B5 IF (ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 586 B5 IF (ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 586 B5 IF (ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 586 B7 IF (ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 586 B7 IF (ADF) .GT. APPC (K) +F(J) B8 ABEPHABS (EPHG(J)) B8 ABEPHABS (EPHG(J)) B9 COP (K) = SCOP (K) + EPHG(J) B8 ABEPHABS (EPHG(J)) SCOP (K) = SCOP (K) + EPHG(J) B9 ABEXH - ABS (EXHG(J)) B1 (ABEXH .GT. AMTST) GO TO 590 B1 ABEXH - ABS (EXHG(J)) SCOX (K) = SCOX (K) + EXHG(J) SCOX (K) = SCOX (K) + EX	ı		(6,750) KDATE(NEAR), KHR, KMIN, SEC, LATEP	7
TB IF (K . EQ. KSITE) GO TO 590 Tost for exclusion of station MPC(K)=MPC(K)=MPC(K)=MPC(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF(K)+F(J) B6 ABEPM=ABS (EPMG(J)) IF (ABEPM . GT. ANTST) GO TO 587 MPCP(K)=MPCP(K)+1 SCOP(K)=SCOP(K)+EPMG(J) SCOP(K)=SCOP(K)+EPMG(J) SCOP(K)=SCOP(K)+EPMG(J) SCOP(K)=SCOP(K)+EPMG(J) SCOY(K)=SCOY(K)+T SCOX(K)=SCOX(K)+T SCOX(K)=SCOX(K)+EXMG(J)			WRITE(6,748)	
Test for exclusion of station 82 CONTINUE 82 CONTINUE 83 CONTINUE 84 CONTINUE 85 IF (ABFJ . GT. TFR . DR. HGJ . LT. THT) GO TO 586 85 IF (ABFJ . GT. TFR . DR. HGJ . LT. THT) GO TO 586 86 ABFPH=ABS (EPHG(J)) 87 ABEPH=ABS (EPHG(J)) 88 ABEPH=ABS (EPHG(J)) 89 ABEPH=ABS (EPHG(J)) 80 COP (K) = SCOP (K) + EPHG(J) 80 ABEPH . GT. AHTST) GO TO 587 81 ABEPH . GT. AHTST) 82 ABEPH . GT. AHTST) 83 ABEPH=ABS (EXHG(J)) 84 ABEPH . GT. AHTST) 85 ABEPH=ABS (EXHG(J)) 86 ABEPH . GT. AHTST) 87 ABEXH=ABS (EXHG(J)) 88 ABEPH=ABS (EXHG(J)) 89 CONTINUE 89 Test for exclusion of station 17 ABEXH=ABS (EXHG(J)) 18 ABEPH=ABS (EXHG(J)) 19 ABEXH=ABS (EXHG(J)) 19 ABEXH=ABS (EXHG(J)) 10 CONTINUE 10 CONTINUE			OR WRITE(A. 705) MODE I PC. INST. I DSW. I HY. KOUT. KAZ.	ת ק
Test for exclusion of station 82 CONTINUE 82 CONTINUE 83 IF (ABFJ .GT. TFR .DR. HGJ .LT. THT) GO TO 586 85 IF (ABFJ .GT. TFR .DR. HGJ .LT. THT) GO TO 586 86 ABFPC (K) = SCOF (K) + F (J) + F (J) 87 SCOF 2 (K) = SCOF 2 (K) + F (J) + F (J) 88 ABFPM = ABS (EPHG (J)) 19 ABFPM - GT. AMTST) GO TO 587 19 APCP (K) = HPCP (K) + PHG (J) 19 SCOP 2 (K) = SCOP 2 (K) + EPHG (J) 19 ABEXM - GT. AMTST) GO TO 590 19 CCOY 2 (K) + EXMG(J) **EXMG(J) **EXMG(•	•	OUTINUE	
TB IF (K .EQ. KSITE) GO TO 590 B2 CONTINUE B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B6 IF ABF MPC (K) + SCOF (K) + F (J) SCOF (K) = SCOF (K) + F (J) + F (J) SCOF (K) = MPC M .GT. AMTST) GO TO 587 B7 ABENH - ABS (EXHG(J)) IF (ABEXH - ABS (EXHG(J)) IF (ABEXH .GT. AMTST) GO TO 590 B7 ABEXH - ABS (EXHG(J)) IF (ABEXH .GT. AMTST) GO TO 590			^	D O
TB IF (K .EQ. KSITE) GO TO 590 B2 CONTINUE B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B5 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 B6 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 SC OF (K) = SCOF (K) + F (J) SC OF (K) = SCOF (K) + F (J) SCOF (K) = SCOP (K) + GT. AMTST) GO TO 587 B7 ABEXH=ABS (EXMG(J)) IF (ABEXH ABS (EXMG(J)) IF (ABEXH .GT. AMTST) GO TO 590 B7 ABEXH .GT. AMTST) GO TO 590			X(X)=800X(X)+84E08=	
The station of station and secont station are continue as the station and station are continue as the station are continued as the statio		18343 CILL LAT (P. Busines Com- Vanda	BEXM .GT. AMTST) GO TO	
Test for exclusion of station from time summary, for this event SCOF(K)=SCOF(K)+F(J) SCOF2(K)=SCOF2(K)+F(J)*F(J) SCOF2(K)=SCOP(K)+F(J) From Properties from Propertie			87 ABEXM=ABS(EXMG(J))	
The station of station and secontinue are continue as a station and secontinue are continue are station as a station and second and		Test for exclusion of station	2(K)=SCOP2(K)+EPMG(J)*EPMG(•
The station of station and secontinue are continue as if (ABEPM - GT. TFR - DR. HGJ - LT. THT) GO TO 586 **RPC(K) = MPC(K) + RC OF (K) + F(J) **F(J) **SCOF (K) = SCOF 2(K) + F(J) **F(J) **F(`	(K)=SCOP(K)+EPMG(J	
78 IF (K .EQ. KSITE) GO TO 590 82 CONTINUE 85 IF (ABF J .GT . TFR .OR. HG J .LT. THT) GO TO 586 MPC(K)=MPC(K)+1 SC OF (K) = SC OF (K)+F(J) SC OF (K)=SC OF (K)+F(J) SC OF 2(K)=SC OF 2(K)+F(J) Fest for exclusion of station ABEPM=ABS (EPMG(J)) Test for exclusion of station from P-mag simmary, for this event from P-mag simmary, for this event			(K)=MPCP(K)+1	
The station of station The station of station of the station of t		from P-may summary, for this event	IF (ABEPM .GT. AMTST) GO TO 5	
78 IF (K .EQ. KSITE) GO TO 590 82 CONTINUE 85 IF (ABF J .GT. TFR .OR. HG J .LT. THT) GO TO 586 MPC(K)=MPC(K)+1 SCOF(K)=SCOF(K)+F(J) SCOF(K)=SCOF2(K)+F(J)*F(J)		lest for exclusion of station	86 ABEPM=ABS (EPMG(J))	
78 IF (K .EQ. KSITE) GO TO 590 82 CONTINUE 85 IF (ABFJ .GT. TFR .OR. HGJ .LT. THT) GO TO 586 MPC(K)=MPC(K)+1 SC OF (K) = SC OF (K)+F(J)		1	COF2(K)=SCOF2(K)+F(J)*F	
78 IF (K . EQ. KSITE) GO TO 590 82 CONTINUE 85 IF(ABFJ .GT. TFR .OR. HGJ .LT. THT) GO TO 586 MPC(K)=MPC(K)+1			COF(K) =SCOF(K)+F(J)	
78 IF (K . EQ. KSITE) GO TO 590 82 CONTINUE 85 IF (ABFJ .GT. TFR .OR. HGJ .LT. THT) GO TO 586	4 In 2 4		MPC(K)=MPC(K)+)	
78 IF (K .EQ. KSITE) GO TO 590	"15tica		85 IF(ADF) .GT. TFR .OR. HGJ .LT. THT) GO TO 58	0
79 TERK SO, KSITE) ON TO SOO		for exclusion of station	ez continue	
realsters	*		78 TECK -FO KSITE) GO TO	,
	isters			

adjustment calculations	979 FORMAT(///, 10x, 'OMITTED',/) 980 FORMAT(12x,A4)
that were omitted from hypocentral)T IM
Dintant of	962 IF (KOMIT .EQ. 0) GO TO 999

55 55 55 55 55 55 55 55 55 55 55 55 55		This block is contained in the M/Prog and all of the subroutines
55 55 55 55 55 55 56 7 6	H+1 (KSW .EQ. 2) GO TO 5	
560 600 700	NC =NC	Load subrouting for .
r 56 2	P(K)=V1(•
564 564	66	
566 567	00 7 K=1,NL V(K)=V2(K)	Load subroutine for
99	P(K)=D	model #2 calculations
7	C COMPUTE THK(L)	
		compute layer thicknesses
573	THK(L)=DP(K)-DP(L)	
-	COMPUTE I	
576 576		
7	ID(K,L	

DID(M, M) =SUMA	591
TID(M,M)=SUM1	590
12 CONTINUE	589
SUMA=SUMA + THK(L) +V(L)/SQT	588
1 + THK(L	587
K	586
	585
SUMA = 0.0	584
SUM1 = 0. 0	583
Z=Z-	582
00 15 N=2,NL	581
N1 = NL = 1	580
11 CONTINUE	579

604 605 606 607 608 602 600 598 598 598 598 594 **E65** 20 CONTINUE **18 CONTINUE** スス=ス+】 X1=X-1 DID(1,M) =2.0* SUMB SUMB=0.0 M1=M-1 MI=M-I DO 40 K=2, N1 SUMB=SUMB + THK(L) + V(L) / SQT SUM2=SUM2 + THK(L) +SQT/(V(M)+V(L)) SQT=SQRT(V(M) +V(M)-V(L)+V(L)) DO 18 L=1,M1 SUM2=0.0 DO 40 M=KK, NL TID(1,M)=2.0*SUM2 DO 20 M=2, NL.

15 CONTINUE

612 613 614

DO 30 L=1,K1 SUMB=0.0

30 CONTINUE

00 35 L=K,M1

SUM1=SUM1 + THK(L) *SQT/(V(M) *V(L))

SQT=SQRT(V(N)*V(M)-V(L)*V(L))

SUMA=SUMA + THK(L) *V(L)/SQT:

SUM2=SUM2 + THK(L) *SQT/(V(M) *V(L))

SQT=SQRT(V(M)*V(M)-V(L)*V(L))

611

SUM2 =0.0 SUM1=0.0

SUMA = 0. 0

critical distances for retracted waves und Compute intercepts of lying on layer boundaries with their sources

6000 6000 6000 6000 6000 6000	SUMB=SUMB + THK(L)+V(L)/SQT 35 CONTINUE TID(K,M)=SUM1+2.0+SUM2 DID(K,M)=SUMA+2.0+SUMB	
628 629	IF (KSW .EQ. 2) GO TO 44 41 DO 42 K=1.NL THK1(K)=THK(K)	mscribe model
630 631 633	DO 42 L=1, NL TID1(K,L)=TID(K,L) DID1(K,L)=DID(K,L) 42 CONTINUE	to appropriate arrays
634		
636	00 TO 1	Transcribe model #2 results
63 8	THK2(K)=TH	to appropriate arrays
639	N.	
547 641 641	1102(x,L)=DID(x,L) 01D2(x,L)=DID(x,L)	
64 3	RETURN	
	Subtoutine to assign or compute the preliminary hupocenter to begin the adjustment procedure	
645	SUBROUTINE PREHY DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), 151 (2,99), DIY(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99),	
	<pre>1EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), W(99), USABE(99), KDATE(99), 2JHR(99), JMIN(99), P(99), PRP(99), AMP(99), S(99), PRS(99), AMS(99), 3PRX(99), AMX(99), RK(99), DT(99), CALP(99), CALS(99), CALX(99), TP(99), 4DX(99), DY(99), DELTA(99), T(99), AX(99), AY(99), AH(99), ANIN(99), F(99), F(99), AT(99), AT(99), AT(99), XH(99), YH(99), DISTI(99), THI(99), FTI(99), FTI(99), AT(99), AT(99), AT(99), YH(99), DISTI(99), THI(99), FTI(99), FTI(99), AT(99), AT(99), AT(99), AT(99), YH(99), DISTI(99), THI(99), FTI(99), FTI(99), AT(99), AT(99), AT(99), AT(99), AT(99), AT(99), AT(99), AT(99), YH(99), AT(99), AT(99</pre>	9),
	6TS (99), AZ (99), V(26), DP (26), THK (26), TID (26, 26), DID (26, 26), TINJ (26), TUIDJ (26), TR (26), VI (26), DPI (26), THKI (26), TIDI (26, 26), DIDI (26, 26), B(4), Y(4), BV2 (26), DP2 (26), THK 2 (26), TID 2 (26, 26), DID 2 (26, 26), A(4, 4), B(4), Y(4), 9C (4, 4), D(3, 3), AP (3, 3), BP (3), G (99), PT (99), KO (99), XXMG (99)	(26), 6), (4),

Trom cartical station	OIF(T	
from purpliced etation	IT OOLTUITION	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Calculate azimuths of stations	IT (ABDI	pα
-	ULV#ABS(ULV)	000
•	XH (NE A	289
	YH(1)-YH(NEAR)	189
	1(1)=50	680
	•EQ. NEAR) GO TO 22	679
	0 22 1=1,KREC	678
Culculate grid coordinates	CONT INUE	7
-	YH(I)=(60.0*(LAT(2,I)-LARED)+YAT(2,I)	676
at selected stations	I)=(60.0*(LON(2, I)-LORED)	7
The state of the s	l I=1,KREC	-
husber they Described	PH=PPP*COS(ZHLAT)	673
MUDE = 2: Calculate preliminary	AT=(60.0*LAT	672
	GO TO 300	671
	Y=2	670
	IF(LOSW .EQ. 1 .AND. INST .GT. 1 .AND. INST .NE. 4) ORG=DRGS	669
	TR	
care on ser or all time to the	ה מ ה	667
The sect of the as above.	D=1 ATR	
to the trial values assigned on	XONED#XONTR	2004 2004
MODE =1: Set preliminary hypocenter		
	ON TAILS	700
the earliest arrival	TET 30	
IT available, or w 2 seconds better	IF (LOSW .EQ. 1 .AND. INST .GT. 1 .AND. INST .NE. 4) UKG=UKGS	660
Camera without of any or a sent with the	ZTR	659
the total some time	YATEP=YAT(2, NEAR)	658
depth ZTR (rave) DH); set prelimination	AT (2	657
at location of neavest station and	P=XON(656
The state of the s	LONEP=LON(2, NEAR)	655
MODE : O: Sot weeken was hance the	G= PM IN-2.0	654
Low must see a see a see a see a mount of	70 (5	653
Co that the set of the set of		652
Constell to solvat chases will at	Y=0	
	メイ・	Ú
scip routines	/UNDM/HILO,CNST,PHRP,ZPMAG,PWRX,ZXMAG,KT,KS NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LO	649
	TID2,DID2, A, B, Y, C, U, AP, BP, G, PT, KD, XXMG, EPMG, E	
the M/Prog and all of the	ELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DIST P, THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THK1, TID1,	•
	, PRS , AMS , PRX , AMX , RK , DT , C ALP , CALS ,	

728	727	726	725		723	722	701	720	710	718	717	715	114	713	712	711	710	709	708	707	706	705	704	703	707	700	699	8 5 9	697	696	695	469	693	692	691	•	689	
B DETAP=AP(1,1)*(AP(2,2) 1-AP(2,1)*(AP(1,2)*AP(3	BF(3)=0.5*((XH(K)**2+Y	1-VB*VB*(TP(J)-TP(N))**2+Y	25 EP	24 AP(3,3)=V8*V8*(TP(K)-TP(N))	AP(3,2)=YH(K)-	22 AP(3,	1	20 AP(2,	10 10 10 10 10 10 10 10 10 10 10 10 10 1	18 AP(1,3)=VR#VR#	17	IT TRUE - FIR 4 - C	THE THE STATE OF T	13 X=XAL	12 J=		10 36	35	34 K	GD TO	33 KALX#KALMN	IF (QUES)33	QUES=AB	O3 32 CONTINUE	Ļ	با بر 0	X AL MX=I	29	7 IF (ALT-ALT	6 28 AL	1 = KO(J)	DO 32 J	KL T=KOLT-1	AL TMN=99.9		90 KAL		DO CONTINII

(H stations)

Determine and identify
stations lying sarthest
to the left and farthest
to the right of the line
connecting the earliest
and the KOLT'th stations

Use Richter's version of
Inglada's inethcol to eliminate
depth and to compute the
preliminary epicenter and
crigin time

757 758 759	7 7 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	749 750 751	745 747 747 748	742 743 744	740 741	737	734 735 736	733	732	729 730 731
=G1*G =-2.0 =(XH(T1=TP(N)-DRGS XNOT=G1*T1+G2 YNOT=G3*T1+G4 LHY=4 GO TO 200	G3=V8*V8*((XH(I)-XH(N))*(TP(M)-TP(N)) 1-(XH(M)-XH(N))*(TP(I)-TP(N)))/DET3 G4=((XH(M)-XH(N))*PP3-(XH(I)-XH(N))*RP2)/DET3 IF(LOSW .EQ. 0) GO TO 150	ET3=ABS(DET3) IF(ET3 .LT. 0.00001) GO TO 5 IF(ET3 .LT. 0.00001) GO TO 5 1-(YH(I)-YH(N))*(TP(M)-TP(N))/DET3 1-(YH(I)-YH(N))*(TP(M)-TP(N))/DET3 G2=((YH(I)-YH(N))*RP2-(YH(M)-YH(N))*RP3)/DET3	100 DET3=(YH(I)-YH(N))*(XH(M)-XH(N))-(YH(M)-YH(N))*(XH(I)-XH(N)) R?2=0.5*((XH(M)**2+YH(M)**2)-(XH(N)**2+YH(N)**2) 1-(VB*(TP(M)-TP(N)))**2) RP3=0.5*((XH(I)**2+YH(I)**2)-(XH(N)**2+YH(N)**2) 1-(VB*(TP(I)-TP(N)))**2)		IF(ZSQ .LT. 0.0) GO TO 200 Z=SQRT(ZSQ)	1-AF(2)1+(AF(1)2)+BF(2)-AF(2)2)+BF(1))/DETAP 2+AP(3,1)*(AP(1,2)*BP(2)-AP(2,2)*BP(1))/DETAP LHY=3 DST2=(XH(N)-XNDT)**2+(YH(N)-YNOT)**2 ZSQ=VB*VB*T1*T1-DST2	1-AP(2,1)*(BP(1)*AP(3,3)-BP(3)*AP(1,3)) 2+AP(3,1)*(BP(1)*AP(2,3)-BP(2)*AP(1,3))/DETAP T1=(AP(1,1)*(AP(2,2)*BP(3)-AP(3,2)*BP(2))	32	2+AP(3,1)*(AP(1,2)*AP(2,3)-AP(2,2)*AP(1,3)) ETAP=ABS(DETAP) IF(ETAP .LT. 0.000001) GO TO 5 XNOT=(BP(1)*(AP(2,2)*AP(3,3)-AP(3,2)*AP(2,3))
If s-porigin time is not available,	If s-Pongintine is availabe, evaluate exercises obtained above	nearest station	equations and valoulate the preliminary epicenter in terms of the traveltime to the	(3 stations) Eliminate depth by differencing		Calculate to from the equation for the nearest station: 450 ct if it is real and greater than hulf the distance of the marest station				

	SP-AQSM)155,156 SP-0.001)160,160,5 SM-0.001)165,165,5 P 170 N G1*T1+G2 G3*T1+G4	G8=G6**2-4.0*G5*G7 IF(G8 .LT. 0.0) GD TO 5 1
Set depth equal to the trial depth (and 01) Put tocal parameters in the form required by the M/Prog	Select appropriate viot of the quadratic and evaluate the epicentral coordinates	substitute Epicenter and trial depth into station #1(mur) equation. Solve the resulting quadratic for the traveltime to station #1(neur)

2DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DISTI, THI, FTI, TS, AZ, V,	DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP1,THK1,TID1,DI	COMMUN/UNDM/HILO,CNST,PWRP,ZPMAG,PWRX,ZXMAG,KT,KSTA,VB,PPP,IS	ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INS	KEY#O		GO TO (10,20), KEY Select	=NL1		K(K)=THK1(K)	$(R) = UP1(R) \qquad mode/\#/$	15 L=1, NL	ID(X, L) = TID1(X,	CONTINUE	60 10	NC#NL2	Load Subt	(K) = DP2(K) Model # 2	K) =V2(K)	25 L=1, NL	D(K, L) =T 102(K,	CONTINUE	COMPUTE LAYER JL		3 L=L+1 Determine which	(L)-2) 53,53,55	د د	60 10	7 TK.J=7-DP(.)	IF(JL .EQ.NL)GO TO 6	COMPUTE INTERCEPT OF WAVE FROM FOCUS IN LAYER JL	SO JUNICAL ALONG THE TOT OF FATENCE FOR	DO 60 L=JJ, NL Intercepts	
THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THK1, TID1, DID2, DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EXMMUN/UNDM/HILO, CNST, PWRP, ZPMAG, PWRX, ZXMAG, KT, ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LAR ED,	MMUN/UNDM/HILO,CNST,PHRP,ZPNAG,PHRX,ZXMAG,KT,KSTA,VB,PPP,IS ITE,NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INS	ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INS		LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNEAR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z))	LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) Statement KEY=0	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GO TO (10,20), KEY	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=KEY+1 GO TO (10,20), KEY Select M. NL=NL1	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP STATEM (X,Y,Z) = SQRT ((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=REY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL Load Subro	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=10 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K)	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=PP1(K) V(K)=V1(K) DO 15 L=1, NL	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DP1(K) = DP1(K) DO 15 L=1, NL TID(K,L) = TID1(K,L) TID(K,L) = TID1(K,L)	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 KEY=1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L) DID(K,L)=DID1(K,L) CONTINUE	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LATEP, LONEP SRTBK(X,Y,Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=1 GO TO (10, 20), KEY NL=NL1 DO (10, 20), KEY NL=NL1 NL	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X, Y, Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=O KEY=O KEY=O KEY=O KEY=N KEY+1 GO TO (10, 20), KEY NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DP(K) = DP1(K) V(K) = V1(K) DO 15 L=1, NL TID(K, L) = TID1(K, L) CONTINUE GO TO 51 NL=NL2	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K, L)=TID1(K, L) DID(K, L)=DID1(K, L) CONTINUE GO TO 51 NL=NL2 Load Subto Load Subto Load Subto Load Subto Load Subto	4LHY, KAZ, DE TA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL TIN(K) = TIN(K) DO 15 L=1, NL TID(K, L) = TID1(K, L) DID(K, L) = DID1(K, L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K) = THK2(K) DO 15 K=1, NL THK(K) = THK2(K) THK(K) = THK2(K) THK(K) = THK2(K) THK(K) = THK2(K)	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z) = SQRT((X*X))/(Y*Y)-(Z*Z)) KEY=O KEY=O KEY=O KEY=KEY+1 GO TO (10, 20), KEY NL=NL1 GO TO (10, 20), KEY NL=NL1 GO TO (10, 20), KEY NL=NL1 Load Subtoned Model #1 Load Subtoned Load Subtoned Load Subtoned Load Subtoned Load Subtoned Load Subtoned NL=NL2 NL=NL2 NL=NL2 KE1, NL Load Subtoned L	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPHG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP STERK(X, Y, Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=O KEY=O KEY=KEY+1 GO TO (10, 20), KEY NL=NL1 DO 15 k=1, NL THK(K) = THK1(K) DP(K) = DP1(K) DID(K, L) = D1D1(K, L) CONTINUE GO TO 51 NL=NL2 GO TO 51 NL=NL2 GO TO 55 k=1, NL THK(K) = THK2(K) DP(K) = DP2(K) DP(K) = DP2(K) DO 25 k=1, NL Model #2 C Model #2 C	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL (AT, LON, LATR, LOTR, LARED, LONEP SRTBK(X,Y,Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DP(K) = DP1(K) V(K) = DP1(K) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K) = THX2(K) DO 25 L=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) TID(K, L) = TID2(K, L) TID(K, L) = TID2(K, L) TID(K, L) = TID2(K, L)	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL (AT, LON, LATR, LOTR, LARED, LONEP) SRTBK(X,YY, Z) = SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=1 GO TO (10, 20), KEY NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DP(K) = DP1(K) V(K) = V1(K) DO 15 L=1, NL TIDI(K, L) = TID1(K, L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K) = THK2(K) DP(K) = DP2(K) V(K) = V2(K) DO 25 L=1, NL TIDI(K, L) = TID2(K, L) DO 25 L=1, NL TIDI(K, L) = TID2(K, L) DO 25 L=1, NL TIDI(K, L) = TID2(K, L) DIO(K, L) = TID2(K, L) DIO(K, L) = TID2(K, L) DIO(K, L) = TID2(K, L)	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SKEY=BY GO TO (10,20), KEY ON 15 K=1, NL THK(K)=THK1(K) DO 15 K=1, NL TID(K, L)=TID1(K, L) DO 25 K=1, NL THK(K)=THK2(K) DO 25 K=1, NL TID(K, L)=TID2(K, L) DO 25 L=1, NL TID(K, L)=TID2(K, L) COMPUTE LAYER JL CONTAINING THE FOCUS	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, ZTR, ZRES, PPHG STEAL (LAT, LON, LATR, LOTR, LATED, LORED, LATEP, LONED STERK(X,Y,Z) = SQRT ((X*X)/(Y*Y)-(Z*Z)) KEY=0 SKEY-KEY+1 GO TO (10, 20), KEY 10 NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DO 15 K=1, NL TID(K, L) = TID1(K, L) DID(K, L) = DID1(K, L) 15 CONTINUE GO TO 51 20 NL=NL2 THK2(K) DP(K) = DPZ(K) DP(K) = DPZ(K) DO 25 K=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) DO 25 L=1, NL TID(K, L) = TID2(K, L) COMPUTE LAYER JL CONTAINING THE FOCUS 51 L=0	4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, ZTR, ZŘES, PPMG STER(L, Y, ZI = SQRT ((X*X)/(Y*Y) - (Z*ZI)) STER(K, Y, ZI = SQRT ((X*X)/(Y*Y) - (Z*ZI)) KEY=0 5 KEY=KEY+1 GO TO (10, 20), KEY 10 NL=NL1 DO 15 K=1, NL THK(K) = THK1(K) DP(K) = DD1(K, L) DIO(K, L) = DD1(K, L) DIO(K, L) = DD1(K, L) 15 CONTINUE GO TO 5 K=1, NL THK(K) = THK2(K) DP(K, L) = TD2(K, L) DP(K, L) = TD2(K, L) DP(K, L) = TD2(K, L) DO 25 K=1, NL TID(K, L) = TD2(K, L) DP(K, L) = TD2(K, L) DO 25 C=1, NL TID(K, L) = DD2(K, L) DO 25 C=1, NL TID(K, L) = TD2(K, L) DO 25 CONTINUE GO TO 5 CONTINUE COMPUTE LAYER JL CONTAINING THE FOCUS 51 L=0 Determine wh	4 LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XME AR, ZTR, ZRES, PPHG ALLAT, COM, LATR, LOTE, LARED, LATEP, LOMEP SRTBAL (AT, COM, LATR, LOTE, LARED, LATEP, LOMEP SRTBAL (AT, COM, LATR, LOTE, LARED, LATEP, LOMEP SRTBAL (AT, COM, LATEP, LOMEP SRTBAL (AT, COM, ZRES, PPHG SOPE (10, 20), KEY INCHARL SOLOTION SI SOLOTION	4LITY, KAI, DETA, MFAR, PFAR, KAIX, KOUT, SMP, XNE AR, ZTR, ZTR, ZTR S, PPHG REAL LAI, LON, LATE, LOTE, LARED, LORED, LATEP, LONEP SRTBKLKXY, ZI = SQRT ((X*X)/(Y*Y) - (Z*Z)) KEY=0 5 KEY=0 5 KEY=0 5 KEY=1 GO TO (10,20), KEY HO 15 K=1, NL THK(K) = HKI(K) DD 15 K=1, NL TID(K, L) = TIDI(K, L) DID(K, L) = DIDI(K, L) DID(K, L) = DIDI	4.HY, KAZ, DETA, MFAR, PFAR, KALY, KOLT, SMP, XMEAR, XFAR, ZTR, ZRES, PPM6 REAL LAT, LON, LATE, LONE, LATEP, LONEP SRTBKLX, Y, ZI=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 5 KEY=6 5 KEY=KEY+1 GO TO (10, 20), KEY 10 NI=NLL 10 15 K=1, NL 11D(K, L)=TID1(K, L) D1 15 L=1, NL 11D(K, L)=TID1(K, L) D1 15 CONTINUE 16 TO 51 20 NI=NLZ 17 NI(K)=TIMZ(K) D1 25 L=1, NL 17 DO(K, L)=TID2(K, L) D1 O(K, L)=TID2(K, L) D1 O(K, L)=TID2(K, L) D1 O(K, L)=TID2(K, L) D1 O(K, L)=TID2(K, L) 25 CONTINUE COMPUTE LAYER JL CONTAINING THE FOCUS 51 L=0 53 L=L+1 16 O TO 57 CONTAINS CONTAI	4.HY, KAZ, DETA, MFAR, PFAR, KALY, KOLT, SMP, XNE A, ZTR, ZRES, PPHG REAL LAT, LON, LATR, LOTR, LARED, LORED SRTBKLX, Y, ZI-SORT ((X*X)/(Y*Y)-(Z*Z)) KEY=0 SRTBKLX, Y, ZI-SORT ((X*X)/(Y*Y)-(Z*Z)) KEY=0 SRTBKLX, Y, ZI-SORT ((X*X)/(Y*Y)-(Z*Z)) KEY-KEY+1 GO TO (10, 20), KEY 10 NI-NL DO 15 K=1, NL THK(K)=THK1(K) DO 15 K=1, NL THD(K, L)=TID1(K, L) DO 15 K=1, NL THK(K)=THK2(K) DO 15 K=1, NL THK(K)=THK2(K) DO 25 K=1, NL THX(K)=THX2(K) DO 25 K=1, NL THX(K, L)=TID2(K, L) DO 25 L=1, NL THX(K, L)=TD2(K, L) DO 15 L=1, NL THX(K, L)=TD2(K, L) SONT INUE COMPUTE LAYER JL CONTAINING THE FOCUS SIL=0 TO ST GO TO (ST NL) GO TO 56 IF (DP(L)-Z) 53, 53, 55 SJ L=0 Contains the	4(HY, KAI, DETA, MEAR, FAAR, KAUX, KOUT, SMP, XNEAR, ZTR, ZRES, PPHG REAL LA T, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP STREK(X,Y, Z) = SQRT((XXX)/(YXY) - (ZXZ)) KEY-O SKEY-KEY-I GO TO (10, 20), KEY OD 15 K=1, NL THK(K) = THK1(K) PHK(K) = THK1(K) PHK(4-LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XME, RX, FAR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZT	4 COMPOUTE INTERCEP OF MAVE FROM SOLIT SHOP, XME AR, ZTR, ZRES, PPHG 4 CATY, KAI, LON, LATR, LOTR, LARED, LONEP SREAL LAT, LON, LATR, LOTR, LATR, LONEP SREAL LAT, LON, LATR, LONE, LONEP SREAL LAT, LON, LATR, LONE, LATR, LONEP SREAL LAT, LONE, LATR, LONE, LATR, LONEP SREAL LAT, LONE, LATR, LONE, LATR, LONEP SREAL LAT, LONE, LATR, LONE, LONE	4-LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XWEAR, XTR, ZRES, PPHG REM. LAT, LONILATE, LOTE, LARED, LONEP SRIBK (X, Y, Z) = SQRT ((XXX)/(YXY) - (ZXZ)) KEY-CO SKEY-KEY-1 GO TO (10,20), KEY SOLOAL SKEY-KEY-1 SOLOAL SOLOAL SOLOAL SOLOAL SOLOAL MOD 15 K=1, NL THKK N) = THKIK N) DO 15 K=1, NL THKK N) = THKIK N DO 15 L=1, NL TIDK K, L) = TIDL (K, L) DO 15 K=1, NL TIDK K, L) = TIDL (K, L) SOLOAL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DP (N) = DP (N) DP (N) = DP (N) DP (N) = DP (N) THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THKK N) = THKIK N DO 25 K=1, NL THK N N = THKIK N DO 25 K=1, NL THK N N = THKIK N DO 25 K=1, NL THK N N = THKIK N DO 25 K=1, NL THK N N = THKIK N DO 25 K=1, NL THK N N = THKIK N DETERMINE W Compatible M IN THK N N N N N N N N N N N N N N N N N N N
DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP1,THK1,TID1,DID1,V2,DP2,THK2 TID2,DID2,A,B,Y,C,D,AP,BP,G,PT,KO,XXMG,EPMG,EXMG COMMUN/UNDM/HILO,CNST,PWRP,ZPMAG,PWRX,ZXMAG,KT,KSTA,VB,PPP,IS KSITE,NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INS KREC,IHR,NEAR,PMIN,ORGS,QQ,ORG,LATEP,YATEP,LONEP,XONEP,Z,KZSW XEP,YEP,RAH,ASDX,ASDY,ASDZ,ASDT,MM,KOUT,XMAG,LOSW,PFI,VA,AAF	MMUN/UNDM/HILO,CNST,PWRP,ZPMAG,PWRX,ZXMAG,KT,KSTA,VB,PPP,ISITE,NLI,NLZ,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INSEC,IHR,NEAR,PMIN,ORGS,QQ,ORG,LATEP,YATEP,LONEP,XONEP,Z,KZSWP,YEP,RAH,ASDX,ASDY,ASDZ,ASDT,MM,KOUT,XMAG,LOSW,PFI,VA,AAF	ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INSEC, IHR, NEAR, PMIN, ORG S, QQ,ORG, LATEP, YATEP, LONEP, XONEP, Z, K ZSWP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LOSW, PFI, VA, AAF,	P, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LO	RTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z))	RTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) Statement	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) Statement KEY=KEY+1	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) Statement KEY=0 KEY=KEY+1 GD TO (10.20).KEY Solort	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GD TO (10,20), KEY NL=NL1 Select m.	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) Statoment KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1,NL	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=NCY-1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) Load SUB-TO Load Sub-TO	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K)	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 KEY=1 GO TO (10,20),KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL mode/ #/	SRTBK(X,Y,Z)=SQRT((X*X)/(Y+Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL DO 15 K=1,NL DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1,NL TID(K,L)=TID1(K,L) TID(K,L)=TID1(K,L)	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=10 KEY	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L) CONTINUE GO TO 51	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1,NL TID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1,NL TID(K,L)=DID1(K,L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1,NL Load Subto Load Subto Load Subto Load Subto Load Subto Load Subto	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=KEY+1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) NL=NL2 DID(K,L)=DID1(K,L) CONTINUE GO TO 51 NL=NL2 DD 25 K=1,NL THK(K)=DP2(K) DP(K)=DP2(K) Select Select Model # 1 Load Subto Model # 2 C	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=0 KEY=0 KEY=0 CONTINUE GO TO (10,20),KEY Load Subtourn Model #1 Load Subtourn Model #2 Load Subtourn Load Subtour	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=0 KEY=0 KEY=0 KEY=KEY+1 GO TO (10,20),KEY N=NL-NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1,NL TID(K,L)=TID1(K,L) DID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1,NL THK(K)=THK2(K) DP(K)=DP2(K) DP(K)=DP2(K) DO 25 L=1,NL TO 25 L=1,NL	SRIBK(X,Y,Z)=SQRI((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=KEY+1 GO TO (10,20),KEY N=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1,NL TID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2 GO TO 51 NL=NL2 GO TO 51 NL=NL2 GO TO 51 NL=NL2 THK2(K) DP(K)=DP2(K) DP(K)=DP2(K) V(K)=V2(K) DO 25 L=1,NL TID(K,L)=TID2(K,L) TID(K,L)=TID2(K,L)	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) KEY=0 KEY=6 KEY=6 KEY=6 GO TO (10,20), KEY N=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2 THK(K)=THK2(K) DP(K)=DP1(K) DP(K) DP1(K)=DP1(K) DP	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY*** SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY*** SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY** Load Subtration of the second sec	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY=RO SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY=RO SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY=RO SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY=RO SREY=RO SREY=RO SREY=RO SREY=ROYA SREY=ROYA SREY=RO	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY=0 5 KEY=0 5 KEY=KEY+1 GO TO (10,20),KEY 10 NL=NL1 10 NL=NL1 DO 15 K=1,NL DO 15 K=1,NL DO 15 L=1,NL TID(K,L)=TID1(K,L) DID(K,L)=DID1(K,L) 11 CONTINUE GO TO S1 20 NL=NL2 DO 25 K=1,NL THX(K)=THX2(K) DO 25 K=1,NL THX(K)=THX2(K) DO 25 L=1,NL TID(K,L)=TID2(K,L) DO 25 L=1,NL THX(K)=THX2(K) DO 25 L=1,NL THX(K)=THX2(K) DO 25 L=1,NL THX(K)=THX2(K) DO 25 L=1,NL TID(K,L)=TID2(K,L) DO 25 L=1,NL TID(K,L)=TID2(K,L) DO 25 L=1,NL TID(K,L)=TID2(K,L) DO 25 L=1,NL THX(K)=TID(K,L) DO 25 L=1,NL THX(K)=THX2(K) THX(K) THX(K)=THX2(K) THX(K) THX(K)	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY*O SKEY*O Load Subtouries Load Subtouries	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SREY- KEY- SEPKEY-1 GO TO (10,20),KEY 10 NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) P(K)=V1(K) P(K)=V1(K) DO 15 L=1,NL TIO(K,L)=TID1(K,L) DIO(K,L)=TID1(K,L) DIO(K,L)=TID1(K,L) DIO(K,L)=TID1(K,L) DIO(K,L)=THZ(K) P(K)=V2(K) DO 25 K=1,NL TIO(K,L)=TID2(K,L) DO 25 L=1,NL TIO(K,L)=TID2(K,L) TIO(K,L)=TID2(K,L) DO 25 L=1,NL TIO(K,L)=TID2(K,L) DO 25 L=1,NL TIO(K,L)=TID2(K,L) TIO(K,L)=TID2(K,L) DO 25 L=1,NL TIO(K,L)=TID2(K,L) TIO(K,L)=TID2(K,L) DO 25 L=1,NL TIO(K,L)=TID2(K,L) TIO(K,L)	SRTBK(X,Y,Z)=SQRT((X,X)/(Y,Y)-(Z,Z)) SKY-KO 5 KEY-KEY-1 GO TO (10,20),KEY 10 NI=NL 10 NI=NL 10 NI=NL 10 NI=NL 11 NI 11 NI 11 NI 11 NI 11 NI 11 NI 12 NI=NL 13 NI 14 NI 15 CONTINUE 16 O TO (11, NI 16 NI 17 NI 17 NI 18 CONTINUE 19 NI 20 NI=NL 21 CONTINUE COMPUTE LAYER JI CONTAINING THE FOCUS 51 L=0 55 JI=L-1 16 O TO 57 Defermine wh 16 O TO 57 17 OF (X, Z) S3, 55 18 O TO 57	SRTBK(X,Y,Z)=SQRT((X,X)/(Y,Y)-(Z,Z)) SRY=Keyo Load Subveyo Model #2 CONTINUE SRY=Keyo SRY=Keyo Model #2 CONTINUE SRY=Keyo SRY=Keyo SRY=Keyo Model #2 CONTINUE Model #2 CONTINUE SRY=Keyo Model #2 CONTINUE SRY=Keyo Model #2 CONTINUE Model #2 CONTINU	SRTBK(X,Y,Z)=SQRT((X*X)/(Y*Y)-(Z*Z)) SRY=R*O 5 KEY=R*O 5 KEY=R*O 60 TO (10,20),KEY 10 NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) PP (K)=DP1(K) V(K)=V1(K) DO 15 K=1,NL TID(K,L)=TID1(K,L) 10 CONTINUE 60 TO \$1 10 Z5 K=1,NL THK(K)=THK2(K) PP (K)=D102(K,L) 11 D(K,L)=TID2(K,L) 12 D(X,L)=TID2(K,L) 13 CONTINUE 14 CONTINUE 15 CONTINUE 16 CONTINUE 16 CONTINUE 17 TKJ=Z-P(JL) 18 L=O,NL) GO TO \$6 18 L=L+1 19 JL=NL 10 TO \$7 50 JL=NL 10 TO \$7 51 L=Q,NL) GO TO \$6	SRIBK(X,Y,Z)=SQRI((X*X)/(Y*Y)-(Z*Z)) SKEY=6	SRIBKIXY, ZI=SQRI(X*X)/(Y*Y)-(Z*Z)) SREYEN SEP-O SEP-O SEP-C GD TO (10,20),KEY 10 NL=NL1 DD 15 K=1,NL THK(K)=THKI(K) DD 15 K=1,NL TIDKK, L)=TIDK(K,L) DIDKK, L)=DIDIKK,L) SCONTINUE DD 25 K=1,NL THK(K)=THKZ(K) DD 25 K=1,NL THK(K)=THKZ(K) DD 25 K=1,NL THK(K)=THKZ(K) DD 25 L=1,NL TIDKK, L)=TIDZ(K,L) DO 25 L=1,NL TIDKK, L)=TIDZ(K,L) SONTINUE COMPUTE LAYER JL CONTAINING THE FOCUS SI L=L0 SI	SRTBKIX,Y,ZI=SQRT((X*XI)/(Y*YI)-(Z*ZI)) SKEY-KEY-1 SKEY-KEY-1 GO TO (10,20),KEY 10 NL=N(1) DI (10,20),KEY 11 NL=N(1) DI (10,20),KEY 12 NL=N(1) DI (10,20),KEY 13 NL=N(1) DI (10,20),KEY 14 NL=N(1) DI (10,20),KEY 15 NL=N(1) DI (10,20),KEY 16 NL=N(1) DI (10,20),KEY 17 NL=N(1) DI (10,20),KEY 18 NL=N(1) DI (10,20),KEY 19 NL=N(1) DI (10,20),KEY 10 NL=N(1) DI (10,20),KEY 11 NL=N(1) DETERMINE Wh SI L=0 SI L=1 Computé 4 SI Ntex Cept is SI L=1,NL Computé 4 Intéx cept is
THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THK1, TID1, DID1, V2, DP2, THK2 D2, DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EXMG MMUN/UNDM/HILO, CNST, PHRP, ZPMAG, PHRX, ZXMAG, KT, KSTA, VB, PPP, IS ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INS EC, IHR, NEAR, PMIN, ORGS, QQ, ORG, LATEP, YATEP, LONEP, XONEP, Z, K ZSH P, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LOSW, PFI, VA, AAF, Y, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNEAR, XFAR, ZTR, ZRES, PPMG AL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP	MMUN/UNDM/HILO,CNST,PHRP,ZPMAG,PHRX,ZXMAG,KT,KSTA,VB,PPP,ISITE,NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INSITE,NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INSEC,IHR,NEAR,PMIN,ORGS,QQ,ORG,LATEP,YATEP,LONEP,XONEP,Z,KZSHP,YEP,RAH,ASDX,ASDY,ASDZ,ASDT,MM,KOUT,XMAG,LOSW,PFI,VA,AAF,Y,KAZ,DETA,MFAR,PFAR,KALX,KOLT,SMP,XNEAR,XFAR,ZTR,ZRES,PPMGAL,LAT,LON,LATR,LARED,LORED,LATEP,LONEP	ITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INSEC, IHR, NEAR, PMIN, ORG S, QQ, ORG, LATEP, YATEP, LONEP, XONEP, Z, K ZSWP, YEP, RAH, ASDX, ASDY, ASDZ, A SDT, MM, KOUT, XMAG, LOSW, PFI, VA, AAF, Y, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR, ZTR, ZR ES, PPMGAL LAT, LON, LATR, LORR, LARED, LORED, LATEP, LONEP	EC, IHR, NEAR, PMIN, ORG S, QQ, ORG, LATEP, YATEP, LONE P, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LO Y, KAZ, DE TA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFAR AL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP	Companies of the second	Y=0	KEY=KEY+1	KEY=0 KEY=KEY+1 GD TO (10.20).KEY	KEY=0 KEY=KEY+1 GD TO (10,20), KEY Select	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K)	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K)	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL	KEY=REY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L)	KEY=0 KEY=KEY+1 GO TO (10,20),KEY NL=NL1 DO 15 K=1,NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=DP1(K) DO 15 L=1,NL TID(K,L)=TID1(K,L) DID(K,L)=DID1(K,L) CONTINUE	KEY=0 KEY=KEY+1 GO TO (10,20),KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) TID(K,L)=TID1(K,L) CONTINUE GO TO 51 (KEY=KEY+1 GD TO (10,20), KEY NL=NL1 DD 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L) DID(K,L)=DID1(K,L) CONTINUE GD TO 51 NL=NL2	KEY=KEY+1 KEY=KEY+1 GO TO (10,20), KEY GO TO (10,20), KEY NL=NL1 NL=NL1 Load Subt Mode/ #/ Mode/ #/ TID(K,L)=TID1(K,L) DID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL Load Subto Load Subto Load Subto Load Subto	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NE=NL1 DO 15 K=1, NL THK(K) =THK1(K) DP(K) = DP1(K) V(K) = V1(K) DO 15 L=1, NL TID(K, L) = TID1(K, L) DID(K, L) = DID1(K, L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K) = THK2(K) DP(K) = DP2(K) Model # 2 C	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=OP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L) DID(K,L)=DID1(K,L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K)=THK2(K) DP(K)=OP2(K) V(K)=V2(K)	KEY=0 KEY=KEY+1 GO TO (10,20), KEY NE=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=TID1(K,L) DID(K,L)=TID1(K,L) CONTINUE GO TO 51 NL=NL2 DO 25 K=1, NL THK(K)=THK2(K) DP(K)=DP2(K) V(K)=V2(K) DO 25 L=1, NL	KEY=0 KEY=KEY+1 GD TO (10,20), KEY N=KEY) GD TO (10,20), KEY NEY) NE (10,20), KEY NE (11,20) Load Subtoned Model #1 Load Subtoned Load Subtoned Load Subtoned NE (12,20) NO 25 K=1, NL THK(K) = THK2(K) DD (K) = P2(K) DD (K, L) = TID2(K, L) TID(K, L) = TID2(K, L) TID(K, L) = TID2(K, L)	KEY=KEY+1 GO TO (10,20), KEY NL=NL1 DO 15 K=1, NL DO 15 K=1, NL DO (10, SPP1(K)) V(K)=PP1(K) V(K)=PP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K, L)=TID1(K, L) DID(K, L)=DID1(K, L) CONTINUE GO TO \$1 NL=NL2 GO TO \$1 NL=NL2 THK(K)=THK2(K) DP(K)=DP2(K) DP(K)=DP2(K) DP(K)=DP2(K) DO 25 L=1, NL TID(K, L)=TID2(K, L) DID(K, L)=TID2(K, L) DID(K, L)=TID2(K, L) DID(K, L)=DP2(K, L) DID(K, L)=DP2(K, L) DID(K, L)=DP2(K, L) DID(K, L)=DP2(K, L)	KEY=NEY+1 GO TO (10,20), KEY 10 NL=NL1 DO 15 K=1, NL THK(K)=THK1(K) DP(K)=DP1(K) V(K)=V1(K) DO 15 L=1, NL TID(K,L)=DID1(K,L) 10 15 L=1, NL TID(K,L)=DID1(K,L) 15 CONTINUE GO TO \$1 20 NL=NL2 DO 25 K=1, NL THK(K)=THK2(K) DP(K)=DP2(K) V(K)=V2(K) DO 25 L=1, NL TID(K,L)=TID2(K,L) DO (K,L)=TID2(K,L) DO (K,L)=TID2(K,L) 25 CONTINUE COMPUTE LAYER JL CONTAINING THE FOCUS	Select S	See	Separation Sep	KEY=0 KEY=KEY+1 GD TO (10,20), KEY IN NI NI DO 15 K=1, NI THK(K) =THK1(K) V(K)=VP1(K) V(K)=VP1(K) DO 15 L=1, NI TID(K,L)=DID1(K,L) DIO 15 L=1, NI TID(K,L)=DID1(K,L) DIO 15 L=1, NI TID(K,L)=DID1(K,L) DIO 25 K=1, NI THK(K)=THK2(K) DO 25 K=1, NI THK(K)=THK2(K) DO 25 L=1, NI THK(K,L)=TID2(K,L) DIO(K,L)=TID2(K,L) DIO(K,L)=TID2(K	Select S	KEY-BO KEY-BY GO TO (10,20), KEY 10 N-8N1 10 N-8N1 10 N-8N1 DO 15 K=1, NL THK(K)=THK1(K) DO 15 L=1, NL TID (K,L)=TID (1(K,L) DID (K,L)=DID (1(K,L) 15 CONTINUE GO TO 51 20 NL=NL2 THK(K)=THR2(K) DO 25 K=1, NL THK(K)=THR2(K) DO 25 L=1, NL THK(K)=THR2(K) DO 25 L=1, NL TID (K,L)=TID (K,L) TID (K,L)=TID (K,L) DO 25 L=1, NL TID (K,L)=TID (K,L) TID (K	KEY-86Y-1 6D TO (10,20),KEY 10 NI=N(1) 10 NI=N(1) 10 15 K=1,NL 110(K,L)=FID1(K,L) 110(K,L)=FID1(K,L) 110(K,L)=FID1(K,L) 115 CONTINUE 6D TO \$1 20 NI=N(2) 10 25 K=1,NL 110(K,L)=FID2(K,L) 10 25 K=1,NL 110(K,L)=FID2(K,L) 125 CONTINUE 6D TO \$1 126 CONTINUE 127 CONTINUE 128 CONTINUE 129 CONTINUE 129 CONTINUE 129 CONTINUE 130 L=1,1 141 L=1,01-NL) 6D TO \$6 14 (L)=L1 (C) NL) 6D TO \$6 15 (L=NL 15 (L,NL) 6D TO \$1 15 (L=NL 15 (L,NL) 6D TO \$6 15 (L,NL 15 (L,	KEY=0 KEY=0 KEY=10 KEY=10 COTO (10,20),KEY IO NI=NII DO 15 K=1,NI THK(K)=THK1(K) PO(K)=DP1(K) V(K)=V1(K) V(K)=V1(K) DID(K,L)=TID1(K,L) DID(K,L)=TID1(K,L) DID(K,L)=THX2(K) NI=NIZ ON 15 K=1,NI TID(K,L)=THX2(K) DID(K,L)=THX2(K) NI=NIZ ON 15 K=1,NI TID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) DID(K,L)=THX2(K) NI=NIZ COMPUTE LAYER JL CONTAINING THE FOCUS SIL=NI IF(JL.GT.NL) GO TO 56 IF(DP1L)-Z153,23,55 SIL=NI GO TO SI IF(JL.GR.NL) GO TO 61 THX IS THX IS THX IN LAYER JL COMPUTE INTERCEPT OF NAVE FROM FOCUS IN LAYER JL LOAD SUBTRIBLE CONTAINS THE COURS IN LAYER JL COMPUTE INTERCEPT OF NAVE FROM FOCUS IN LAYER JL LOAD SUBTRIBLE CONTAINS THE COURS IN LAYER JL LOAD SUBTRIBLE COURS THE COURS IN LAYER JL LOAD SUBTRIBLE COURS THE COU	KEY*EY*1 SEY*EX*Y1 SO TO (10,20), KEY ON 15 KEY*KEY*1 ON 15 KE_N. THK(K) = THKI(K) DO 15 KE_N. THK(K) = THKI(K) DO 15 KE_N. TIDIK, L) = TIDIK, L) DO 15 L=1, M. TIDIK, L) = TIDIK, L) TIDIK, L) = TIDIK, L) SO TO 51 20 NE **NE* THK (K) = THKIKIK) DO 25 KE_N. THK (K) = THKIKIK) DO 25 KE_N. THK (K) = THKIKIK) DO 25 KE_N. THO K, L) = TIDIK, L) DO 25 L=1, M. TIDIK, L) = TIDIK, L) TIDIK, L) = TIDIC, L) TIDIK, L) TIDIK, L) = TIDIC, L) TIDIK, L) TIDIK, L) = TIDIC, L) TIDIK, L)	KEY-EY-1 SKEY-KEY-1 GO TO (10,20), KEY HO (11, 20), KEY NEWN CONTINUE GO TO (10,20), KEY DO 15 K-1, NL TIDKK, 1-FIDR(K) PV(K)-PV(K) DO 15 L-1, NL TIDKK, 1-FIDR(K, L) DO 15 L-1, NL TIDKK, 1-FIDR(K, L) DO 15 L-1, NL TIDKK, 1-FIDR(K, L) DO 25 K-1, NL TIDKK, 1-FIDR(K, L) DO 25 L-1, NL Compute wh Compute wh Compute wh SO TO 57 Solution Compute wh TICKL 1-CONTINUE Compute wh Solution Compute wh TICKL 1-CONTINUE TICKL 1-CONTINUE Compute wh TICKL 1-CONTINUE TICKL 1-CONTINUE Compute wh TICKL 1-CONTINUE Compute wh TICKL 1-CONTINUE Compute wh TICKL 1-CONTINUE TICKL

C COMPUTE DELTA BEYOND WHICH ALL 1ST ARRIVALS ARE REFRACTIONS XOVMAX=V(JJ)*V(JL)*(TINJ(JJ)-TID(JL,JL))/(V(JJ)-V(JL))	Compute distance beyond which all 1st arrivals are refracted waves
ALCONTINUE COMPUTATIONS FOR VARIOUS DELTA	
ALLUNS FOR VARIOUS	Compute refracted wave
1F(MDL(2,1) .NE, KEY) GU (U 300 90 IF(JL .EQ. NL) GO TO 210	traveltimes
	•
7#17	Determine without refracted.
KT N. 106 - 106 -	distance
106 IF(DIDJ(N) .GT. DELTA(II) GO TO 108	
MINT	•
108 IF(M .LT. NL) GU 10 104	Tact inhether an which water atal wave is let arrive
ALCULATE TT A	Calculate decivatives and anale of
DTDD =1.0/V(K)	Incidence and "load" arrays (It
0TDH =-SQRT(V(K)+V(K)-V(JL)/V(K)) ANIN(I)=3.141593-ARSIN(V(JL)/V(K))	earliest arrival is a refracted wave)
~	
PUTE IT AND DERIVS OF	Calculate traveltime, derivatives,
201 SQT=SQRT(Z*Z+DELTA(I)*DELTA(I))	and angle of incidence it bous
	hes in upper most layer and the
I)=T0J1	direct, wave is the 1st arrival.
1F(SQ1 .L1. 0.000001) SQ1=0.000001	Lond appropriate arrays
DTDH =2/(V(1)*SQT)	
IF(ZL .LT. 0.000001) ZL=0.000001	

```
874
874
875
876
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          870
871
872
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     869
               906
                                         904
                                                        898
900
901
902
902
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          881
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      878
879
                                                                                                                                               894
898
898
                                                                                                                                                                                                       892
893
                                                                                                                                                                                                                                    891
                                                                                                                                                                                                                                                   889
888
                                                                                                                                                                                                                                                                                888
                                                                                                                                                                                                                                                                                              887
                                                                                                                                                                                                                                                                                                            888
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       BEGIN ROUTINE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       212
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     210 LL=0
 230
                                                                                      222
                                                                                                                                                 220
                                                                                                                                                                                           217
                                            226
                                                                                                    221
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ARGB=1.0-UB*U
                                            XLIT=XTR
                                                                                                                                                 CONTINUE
                                                                                                                                                                                           DELXTR=TKJ*U/SQRT(ARGJ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DELBIG=TKJ*UB/SQRT(ARGB
                                                                                                                                                                                                                                                                                               CONT INUE
IF(LL .LT. 25) GO TO 215
                                                                                       XBIG=XTR
                                                                                                                                                                                                                                                   XTR=XLIT+(DELTA(I)-DELLIT)*(XBIG-XLIT)/(DELBIG-DELLIT)
                                                                                                                                                                                                                                                                                                                       DO 214 L=1,J1
DELBIG=DELBIG+(THK(L)*UB)/SRTBK(V(JL),V(L),UB)
              IF(1.0-U .LT. 0.0002 .AND.
                            DELLIT=DELXTR
                                                          GO TO 229
                                                                                                                                                                                                                       ARGJ=1.0-U*U
                                                                                                                                                                                                                                                                                 1+11=11
                                                                                                                                                                                                                                                                                                             DELLIT=DELLIT+(THK(L)*UL)/SRTBK(V(JL),V(L),UL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            DELL IT = TKJ +UL / SQRT (ARGL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ARGL=1.0-UL*UL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                XLIT=DELTA(I)*TKJ/Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ANIN(1)=ANIN(1)*57.29578
                                                                        DELBIG=DELXTR
                                                                                                   IF (TEST) 222, 233, 226
                                                                                                                                                             DELXTR=DELXTR+(THK(L)*U)/SRTBK(V(JL),V(L),U)
                                                                                                                                                                            DO 220 L=1,J1
                                                                                                                                                                                                                                     U= XTR/SQRT((XTR*XTR)+(TKJ*TKJ))
                                                                                                                                                                                                                                                                  IF(DELBIG-DELLIT .LT. 0.02) GO TO 231
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF(ARGB .LT. 0.00000001)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF(ARGL .LT. 0.00000001) ARGL=0.00000001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  UL=XLIT/SQRT(XLIT*XLIT+TKJ*TKJ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 UB=XBIG/SQRT(XBIG*XBIG+TKJ*TKJ)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            XBIG=DELTA(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         IF (TKJ .LT. 0.000001) TKJ=0.000001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        IF(DELTA(I) .LT. 0.000001) DELTA(I)=0.000001
                                                                                                                                                                                                       IF(ARGJ .LT. 0.00000001) ARGJ=0.00000001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(Z .LT. 0.000001) Z=0.000001
                                                                                                                   [F(ABS(TEST)-0.021233, 233, 221
                                                                                                                                 TEST=DELTA(I)-DELXTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TO FIND ROOT OF REFRACTION EQUATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AR GB=0.00000001
                GE.
                10)60 TO 233
```

originatin

からかど

4262

direct

wave

alculations

•
•
1
erate so
Mar top of Majer
This class const
angle of meldence in non-defension
case
-
Load derivative arrays
Switch to lead program through a models in succession

SURROUTINE HYCER SURROUTINE HYCER SIELZ, 991, LATIZ, 991, HAITZ, 991, HAITZ, 991, HANTZ, 991, ANDRIZ, 991, JELZ, 991, DLYZ, 991, MOLZ, 991, HAITZ, 991, HAITZ, 991, ASEE 991,	Evaluate and test the determinant	DETA=A(1,1)*C(1,1)+A(2,1)*C(2,1)+A(3,1)*C(3,1)+A(4,1)*C(4,1) ETA=ABS(DETA)	971 972
SUPROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), LEL(2,99), DLY(2,99), P(59), PRSTA(99), H(59), GSBE(99), AMS(99), 2JIR(99), JYIN(99), P(59), PRSTA(99), H(59), PRS(99), AMS(99), 2DX(99), DY(99), DELLA(99), T(99), AX(99), AY(99), AX(99), PRS(99), FRS(99), AMS(99), 5PMAG(99), AT(99), DELLA(99), T(99), AX(99), AY(99), AMIN(99), F(99), 5PMAG(99), AT(99), PRS(26), THX (26), TID(26,26), DID(26,26), TID(26), 5PMAG(99), AT(99), PRS(26), THX (26), TID(26,26), DID(26,26), TID(26), 5PMAG(99), AT(99), PRS(26), THX (26), TID(26,26), DID(26,26), TID(26), 7DIDJ(26), TR(26), TR(2(26), TID(2(26,26)), AY(49), 8V2(26), DPZ(26), THX(2(26), TID(2(26,26)), AY(49), FRENCION EPMG(99), EXAG(99) FRENCION NSTA, LAT, YAT, LON, XOH, EL, DLY, MDL, M STA, H,Q SABE, KDATE, JHR, 1JMIN,P,PRP, AMP, S,PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, 2DELTA, T, AX, AYA, AH, AMIN,F, PMAG, AT, BT, XH, YH, DISTI, THI, FTI, TS, AZ, V, 4TID2, DID, TINJ, DIDJ, TR, VI,DP1, THK, TID1, DID1, V2,DP2, THX2, 4TID2, DID, A, BB, Y, C, D, AP, BP, G, PT, K,Q X, MG, EPMG, EXB, COMMON, JUNDH/HILO, CN, ST, PMRP, Z PMAG, EMG, KT, KSTA, WB, PPP, ISTS, 1KSITE, NL1, NL2, LATE, YATTR, LDTR, XONTR, ZONT, LARED, LORED, MODE, INSTI, 2RREC, 1HR, NEAR, PHAR, PHAR, Z PMAG, KT, KSTA, WB, PPP, S, ZZSW, 7LLY, KAZ, DETA, HFAR, PFAR, ZANT, KOUT, XMAG, EDWG, KT, KSTA, WB, PPP, G, TAZ, XOT, LARED, LORED, MODE, INSTI, 1GO TO (5,200,300,300,300,1NST) 1GO TO (5,200,300,300,200,300,1NST) 1GO TO (5,200,300,300,200,300,1NST) 1GO TO (5,200,300,300,300,1NST) 1GO TO (5,200,300,300,300,1NST) 1GO TO (5,200,300,300,300,1NST) 1GO TO (5,200,300,300,300,1NST) 20 TO (5,200,300,300,300,1NST) 20 TO (5,200,300,300,300,1NST) 21 TO (5,200,300,300,300,1NST) 22 TO (1,1N) = (1,1), AND (1,1), AND (1,1), AND (1,2), AND (coest of a	1 -U(1,2)*(U(2,1)*U(3,3)-U(3,1)*U(2,3)) 2 +D(1,3)*(U(2,1)*D(3,2)-D(3,1)*U(2,2))) 0 CONTINUE	
SUBROUTINE HYCOR DIMENSION NSTA(Z,99), HOL(Z,99), HSTA(99), H(Z,99), AND(Z,99), LEL(Z,99), DLY(Z,99), MDL(Z,99), HSTA(99), H(Y), QSABE(99), KDATE(99), JHR(99), JHIN(99), P(99), PRP(99), ANP(99), S(99), PRS(99), ANS(99), SPRAG(99), ANX(99), R(S(99), T(99), ANP(99), CALS(99), CALS(99), CALS(99), CALS(99), TR(199), SPRAG(99), ANX(99), R(S(99), T(99), ANY(99), AY(99), AH(99), HI(99), F(199), SPRAG(99), ANX(99), BT(99), H(99), AY(99), AY(99), AH(99), AH(99), F(199), SPRAG(99), ANX(99), R(S(9), T(S(1)), T(S(1)), T(S(1)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(2)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(1)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(99), ANX(99), R(S(2)), T(S(2)), T(S(2)), D(1), C2, C26), D(1), C2, C26), SPRAG(1), TR(2), ANX(1), T(S(2)),	coluctor matrix	C(M,N)=((-1.0) +*(M+N)) *(D(1,1)*(D(2,2)*D(3,3)-	96
DIMENSION NSTA(2,99); LAT(2,99); LON(2,99); CON(2,99); LON(2,99); LEL(2,99); DLY(2,99); MDL(2,99); MSTA(99); A(99); ASABE(99); ADATE(99); ASABE(99); ADATE(99); ADATE		CONT	*
DIMENSIAN NSTA(2,99), LAT(2,99), HON(2,99), KDA(2,99), ELL(2,99), DLY(2,99), HDL(2,99), HSTA(99), H(99), QSABE(99), KDATE(99), BTJJHR (99), PS (99), PS (99), ANS (99), PS (99), AND (199), PS (199), PS (199), AND (199),		D(K,L)=	10
DIMENSION NSTA(2,99), LAT(2,99), WAT(2,99), LON(2,99), CON(2,99), DLY(2,99), MDL(2,99), MSTA(99), H(99), QSABE(99), KDATE(99), ZJUR(99), DLY(2,99), PRP(99), ANP(99), CALY(99), ANS(99), ANS(99), PRP(99), ANP(99), CALY(99), ANS(99), ANS(99), ANS(99), ANX(99), ANX(99), PRE(99), TOT(99), CALY(99), CALY(99), CALY(99), FAX(99), AND(99), AND		[=[+]	65
DIMENSION NSTA(2,99), LAT(2,99), WAT(2,99), LON(2,99), CIECL(2,99), DLY(2,99), MOL(2,99), MSTA(99), H(99), QSABE(99), KDATE(99), ZJIR(99), JHIN(99), PRPP(99), ANY(99), CALS(99), ANS(99), ANS(99), ANX(99), ANX(9		15/1 FO NI GO TO	P 6
DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XDA(2,99), BLL(2,99), DLY(2,99), MDL(2,99), MSTA(39), M(3,99), QSA, BE(99), KDATE(99), 2JIR(99), JMIN(99), PRS(99), ANS(99), ANS	adjustment of xyy = and to	[=0	. ~
DIMENSION NSTA(2,99), HAT(2,99), YAT(2,99), LON(2,99), ADA(2,99), DLY(2,99), MDL(2,99), MSTA(39), H(99), QSA, BE(99), KDATE(99), 2JHR(99), JMIN(99), PRS(99), AMS(99), AMS(99)	of normal equations in "free"	ス=ズナ】	, (
DIMENSION NSTA(Z,99), LAT(Z,99), YAT(Z,99), LON(Z,99), XON(Z,99), 1EL(Z,99), DLY(Z,99), MDL(Z,99), MSYA(99), QSABE(99), KDATE(99), 2JHR(99), JHIN(99), P(S9), PRP(99), AMP(99), S(99), PRS(99), AMS(99), 3PXX(99), AMX(99), RK(99), T(99), AX(99), AX(99), ALX(99), FRS(99), 4DX(99), DY(99), DELTA(99), T(99), AX(99), AX(99), ANIN(99), F(199), 5PNAG(99), AT(99), BT(99), XH(99), XH(99), DISTI(99), THI (99), FI (99), 6TS(99), AT(99), V(26), DP(26), THX (26), TID(26, 26), DID(26, 26), DID(1(26, 26), DID(1(26), 26), 7DIDJ(Z6), TR(26), VI (26), DP(1(26), THXI (26)), TID(1(26, 26), DID(1(26, 26), DID(1(26), 26), 8V2(26), DP(3,3), AP(3,3), BP(3), GP(3)), FI (99), KO(99), XXHG(99), DIMENSION EPMG(99), EXMG(99) DIMENSION EPMG(99), EXMG(99), PT(99), KO(99), XXHG(99), XXHG(99) DIMENSION EPMG(99), EXMG(99) DIMENSION EPMG(99), EXMG(99) COMMON/UNDM/HILO, CNST, AMS, FRX, DT, CALP, CALS, CALS, TD, DX, DY, 2DP, THK, TID, DID, TINJ, DIDJ, TR, VI, DP1, THK1, TID1, DID1, V2, DP2, THK2, 4TID2, DID2, A,B Y,C,O,A,P, BP, G, PT, KO,XXHG, FPMG, EXMG COMMON/UNDM/HILO, CNST, PMRP, ZPMRAG, PHRX, ZYHAG, KT, KSTA, VB, PPP, JSTS, 1KSITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INST, 2XREC, 1HR, NEAR, PHIN, DRGS, QQ,DRG, LATEP, YATEP, LONEP, Z, KZSH, 3XEP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XHAG, KUT, KSTA, ZRES, PPHG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSH, 4CO, 300, 300, 300, 300, 300, 1NST1 IF(RAH, LIT, LON, LATR, LOTR, LARED, LORED, LAREP, LONEP, Z, KZSH, DD 40 N=1,4	Koutine to solve 4x4 system	TELL FOR MI GO	> 4
DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), IEL(2,99), DLY(2,99), MOL(2,99), MSTA(99), M(99), QSABE(99), KDATE(99), 2JHR(99), JHIN(99), P(99), PRP(99), ANP(99), CALS(99), PRS(99), ANS(99), 3PRX(99), DY(99), DELTA(99), T(99), A(199), CALS(99), CALS(99), ANS(99), 5PRAG(99), AT(99), BT(99), XH(99), YH(99), DISTI(99), HIY(99), FTI(99), 6TS(99), AT(99), BT(99), XH(99), THK(126), TID(26,26), DID(26,26), TINJ(26), 7DIDJ(26), THK(26), VI(26), DPI(26), THK(126), TID(26,26), DID(26,26), TINJ(26), 8V2(26), DP2(26), THK(26), THK(126), TID(26,26), A(4,4), B(4), Y(4), 9C(4,4), D(3,3), AP(3,3), BP(3), BP(3), B(9), PT(99), KO(99), XXMG(99), DIMENSION EPMG(99), EXHG(99) COMMON, NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, YSTA, H, QSABE, KDATE, JHR, 2DP, THK, TID, DID, TINJ, DIDJ, TR, VI, DP1, THK1, TID1, DID1, Y2, DP2, THK2, 4TID2, DID2, A, B, Y, C, O, AP, BP, G, PT, KO, XX, YH, CALS, TH, FTI, TS, AZ, V, 4TID2, DID2, A, B, Y, C, O, AP, BP, G, PT, KO, XXMG, EPMG, EX MG COMMON, UNDM/HILO, CNST, PHRP, ZPMAG, PHXX, ZXMAG, KT, KSTA, VB, PPP, ISTS, 1KSITE, NL1, NL2, LATR, VATTR, LOTR, XONTR, ZNMO, EPMG, ETM, KSTA, VB, PPP, ISTS, 2KREC, IHR, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, EPMG, ETM, KSTA, VB, PPP, ISTS, 1KSITE, NL1, NL2, LATR, VATTR, LOTR, XONTR, ZNMO, EPMG, ETM, KSTA, VB, PPP, ISTS, 2KREC, IHR, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, EPMG, ETM, VB, PPP, ISTS, 1KSITE, NL1, NL2, LATR, LOTR, KALX, KOLT, SMP, XNE AR, XTR, ZTR, ZRES, PPMG 8 PEAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 3 CPP, YEP, RAH, ASDX, ASDZ, ASDZ, ASDT, MM, KOUT, XMAG, LOSM, PFI, VA, AAF, 1 CM, MARCHAN, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 3 CPP, YEP, AM, SDX, ASDZ, ASDZ, ASDZ, MA, SP, XNE AR, XTR, ZTR, ZRES, PPMG ARAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 5 CM, MARCHAN, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 5 CM, MARCHAN, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 5 CM, MARCHAN, LATR, LOTR, LARED, LORED, LATEP, LONEP, Z, KZSM, 5 CM, MARCHAN, LA		X=0	1 CS
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), IEL(2,99), DLY(2,99), MDL(2,99), MSTA(99), H(99), QSABE(99), KDATE(99), 2JHR(99), JMIN(99), P(99), PRP(99), ANP(99), S(99), PRS(99), ANS(99), 3PRX(99), AMX(99), PK(99), DT(99), CALP(99), AY(99), AY(99), ANIN(99), FP(99), 4DX(99), DY(99), DELTA(99), TY(99), AY(99), AY(99), AY(99), ANIN(99), FP(99), 5PRAG(99), AX(99), DELTA(99), TH(99), XY(99), DISTI(99), THI(99), FFI(199), 6TS(99), AX(99), V(26), DP(26), THX(26), TID(26, 26), DID(26, 26), DID(26, 26), 7DIDJ(26), TR(26), VI(26), DP(26), THX(126), TID1(26, 26), DID(26, 26), DID(26, 26), 8V2(26), DP2(26), THX(2(26), THX(126), THX(199), KD(199), COMMON NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, 1JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DV, 2DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DISTI, THI, FTI, FTD, DX, DV, 2DP, THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THX1, TTD1, DIDJ, V2, DP2, THX2, 4TID2, DIO2, ALB, Y, C, D, AP, BP, G, PT, KO, XMMG, EPMG, KT, KSTA, VB, PPP, ISTS, 1KSITE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LAR ED, LORED, MODE, INST, 2KREC, IHR, NEAR, PMIN, DGG, S, QQ, DRG, LATEP, YATEP, LONEP, ZN, KZSM, 3XEP, YEP, RAH, ASDX, ASDY, ASDT, MM, KOUT, XMAG, KT, KSTA, VB, PPP, GR, KZSM, 4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNEAR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LORED, MPFI, VA, AAF, 4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNEAR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LONEP, ZORE, PPMG, LONEP, ZOO, 300, 300, 300, 300, 1NST1 1F(TRAH, LIT. 0.02, OR, KZSM, EQ, 1, OR, KSTA, EQ, 3) GO TO 200 ALDO 40 M=1,4		40 N=1	7
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), 1EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), H(99), QSABE(99), KDATE(99), 2JHR(99), JMIN(99), P(99), PRP(99), ANP(99), S(99), PRS(99), ANS(99), 3PRX(99), JMIN(99), PK(99), DT(99), CALP(99), CALS(99), PRS(99), TP(99), 4DX(99), DY(99), DELTA(99), T(99), AX(99), AX(99), AMIN(99), FY(99), 6TS(99), AX(99), V(26), DP(26), THX(26), TIU(26,26), DIU(26,26), TIU(26,26), 7DIDJ(26), TR(26), VI(26), DP(26), THX(26), TIU(26,26), DIU(26,26), 8V2(26), DP2(26), THX(26), TIO2(26,26), DID2(26,26), DID(26,26), BYANG(99), AX(99), WA(99), BYANG, PRX(DI), WA(99), KO(99), XXMG(99), COMMON NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, 1JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DV, 2DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DISTI, THI, FTI, TS, AZ, V, 3DP, THX, TID, DID, TINJ, DIDJ, TR, V1, DPI, THX1, TID1, DID1, V2, DP2, THX2, 4TID2, DID2, AA, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EX, G COMMON/UNDM/HILO, CNST, PHRP, ZPMAG, PHRX, ZXMAG, KT, KSTA, VB, PPP, ISTS, 2KREC, IHR, NEAR, PHIN, DRGS, QQ, DRG, LATEP, YATEP, LONEP, Z, KZSM, 3XEP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, KU, PFI, VA, AAF, 4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XME AR, XFAR, ZTR, ZR ES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LONEP, Z, KZSM, 3G TO (5,200,300,300,300,300), INSTI 5e 5g GO TO (5,200,300,300,200,300), INSTI 5c 5c 5c 5c 5c 5c 5c 5c 5c 5	- 1	DO 40 M=1,4	•
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), IEL(2,99), DLY(2,99), MDL(2,99), MSTA(99), M(99), QSABE(99), KDATE(99), 2JHR(99), DLY(2,99), P(99), PRP(99), AMP(99), CALS(99), CALX(99), AMS(99), 3PRX(99), AMX(99), PK(991,DT(99), CALP(99), AY(99), AH(99), ARS(99), 4DX(99), DY(99), DELTA(99), T(99), AX(99), AY(99), AH(99), FT(99), 6TS(99), AX(99), Y(26), DP(26), THK(26), TIU(26,26), DIU(26,26), BY(2(26), TR(26), V1(26), DP1(26), THK1(26), TIU(26,26), DIU(26), 26), BY(2(26), DP2(26), THK2(26), TID(26,26), TID(26,26), DIU(26), 26), BY(2(26), DP2(26), THX, YAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, 1JMIN,P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, 2DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DIST1, TH1, FT1, TS, AZ, V, 3DP, THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THK1, TID1, DID1, V2, DP2, THK2, 4TID2, DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EXMG COMMON/UNDM/HILO, CNST, PMRP, ZPMAG, PWRX, ZXMAG, KT, KSTA, VB, PPP, ISTS, 1KSITE, NL1, NL2, LATR, VATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INST, 2KREC, IHR, NEAR, PMIN, ORGS, QQ, ORG, LATEP, YAT EP, LONEP, Z, KZSM, 3XEP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LOSH, PFI, VA, AAF, 4LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, ZTR, ZRES, PPMG INST1=INST+1 5e Sold To (5, 200, 300, 300, 300, 300, 100, 100, 100, 1	Automatic control	IF(RAH .LT. 0.02 .DR. KZSW .EQ. 1 .DR. KSTA .EQ. 3) GO TO	U 1 -
DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), IEL(2,99),DLY(2,99),MDL(2,99),MSTA(99),H(99),QSABE(99),KDATE(99), 2JIR(99),JMIN(99),P(99),PR(99),AMP(99),S(99),PRS(99),AMS(99), 3PRX(99),AMX(99),RK(991,DT(99),CALP(99),CALS(99),CALX(99),IP(99), 4DX(99),DY(99),DELTA(99),T(99),XA(99),AX(99),AY(99),AH(99),FT1(99), 5PNAG(99),AZ(99),V(26),DP(26),THX(26),TIU(26,26),DID(26,26),III(99),FT1(99), 8V2(26),DP2(26),THX2(26),THX(26),THX(26),TIU(26,26),DID(26,26),DID(26,26), 1DIJ(26),TR(26),THX2(26),TID2(26,26),TIU(26,26),DID(26,26),DID(26,26), 9C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KO(99),XXMG(99) COMMON NSTA,LAT,YAT,LON,XON,EL,DLY,MDL,MSTA,M,QSABE,KDATE,JHR, 1JMIN,P,PRP,AMP,S,PRS,AMS,PRX,AMX,RK,DT,CALF,CALS,CALX,TP,DX,DY, 2DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP,T,THY,TH,DIST1,TH1,FT1,TS,AZ,V, 3DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP,T,THX1,TID1,DID1,V2,DP2,THX2, 4TID2,DID2,A,B,Y,C,D,AP,BP,G,PT,KO,XXMG,EPMG,EXMG COMMON/UNDM/HILD,CNST,PMRP,ZPMAG,PMX,XXMG,EPMG,EXMG COMMON/UNDM/HILD,CNST,PMRP,ZPMAG,TX,XOT,LARED,LORED,MODE,INST, 2KREC,IHR,NEAR,PMIN,ORGS,QQ,ORG,LATEP,YATEP,LONEP,XAXSA,VB,PPP,ISTS, 4CHY,KAZ,DETA,MFAR,PFAR,KALX,KOLT,SMP,XNEAR,XFAR,ZTR,ZRES,PPMG REAL LAT,LON,LATR,LOTR,LARED,LORED,LORED,LATEP,LONEP,	Select proper adjustment routing	GD TD (5.200.300.300.200.300.300).TNST1	6 0
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),M(99),QSABE(99),XDATE(99), JHR(99),JMIN(99),P(99),PRP(99),ANP(99),S(99),PRS(99),ANS(99), PRX(99),JMIN(99),PK(99),DT(99),AX(99),AY(99),AH(99),ANIN(99),FY(99), DX(99),DY(99),DELTA(99),T(99),XX(99),AY(99),AH(99),ANIN(99),FT(99), TS(99),AI(99),V(26),DP(26),THX(26),TID(26,26),DID(26,26),THI(99),FT(199), TS(99),AI(99),V(26),DP(26),THX(26),TID(26,26),DID(26,26),DID(26,26), TS(99),AI(99),V(26),DP(26),THX(26),TID(26,26),DID(26,26),TIN(99),FT(199), V2(26),DP2(26),THX(2(26),TID2(26,26),DID(26,26),DID(26,26),DID(26,26), DD)J(26),THX(2(26),THX(2(26),TID2(26,26),DID(26,26),A(4,4),B(4),Y(4),V(2(26),DID(2,4),AY(3,4)		REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONE	, ~
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),H(99),QSABE(99),KDATE(99), EL(2,99),DLY(2,99),PR9(99),AMP(99),S(99),PRS(99),AMS(99), JHR(99),JMIN(99),PR(99),PRP(99),CALP(99),CALS(99),PRS(99),AMS(99), PRX(99),AMX(99),PR(99),T(99),AX(99),AY(99),AH(99),FP(99), DX(99),DT(99),DELTA(99),TH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AT(99),DT(99),DT(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AT(99),TR(26),TIDZ(26),THX(126),TID1(26,26),DID1(26,26),TINJ(26), DIDJ(26),TTR(26),TID2(26),TTD2(26,26),DID2(26,26),DID1(26,26),DID1(26,26), DIDJ(26),TTR(26),TID2(26),TID2(26,26),DID2(26,26),DID1(26,26),DID1(26,26), DIDJ(26),TTR(26),TID2(26),TID2(26,26),TID1(26,26),A(4,4),B(4),Y(4), C(4,4),DI3,3),BP(3,),BP(3),G(99),PT(99),KO(99),XXHG(99) DIMENSION EPMG(99),EXMG(99) DIMENSION EPMG(99),EXMG(99),FT(99),KO(99),XXHG(99) DIMENSION EPMG(99),EXMG,AT,BT,XH,YH,DIST1,TH1,FT1,TS,AZ,V, DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP1,THK1,TID1,DID1,V2,DP2,THK2, TID2,DID2,A,B,Y,C,D,A,B,Y,C,D,A,XMG,EPMG,EX,MG COMMON/UNDM/HILO,CNST,PMRP,ZPMAG,PMRX,ZXMAG,KT,KSTA,VB,PPP,ISTS, KSITE,NL1,NL2,LATR,YATTR,LOTR,XONTR,ZNOT,LARED,LORED,MODE,INST, KREC,IHR,NEAR,ASDX,ASDY,ASDT,ASDT,MM,KOUT,XMAG,LOSE,PFT,VA,AAF,		LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNE AR, XFA	
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), EL(2,99), DLY(2,99), MDL(2,99), NSTA(99), M(99), QSABE(99), KDATE(99), EL(2,99), DLY(2,99), P(99), PRP(99), AMP(99), S(99), PRS(99), AMS(99), JHR(99), AMX(99), RK(991, DT(99), CALP(99), CALS(99), PRS(99), AMS(99), PRX(99), DY(99), DELTA(99), TT(99), AX(99), AY(99), AH(99), ANIN(99), F(99), TS(99), AZ(99), V(26), DP(26), THK(26), TID(26, 26), DID(26, 26), TIN(26), TS(99), AZ(99), V(26), DP(26), THK(26), TID(26, 26), DID(26, 26), DID(26, 26), TS(99), AZ(99), V(26), DP(26), THK(26), TID(26, 26), DID(26, 26), DID(26, 26), TS(99), AZ(99), V(26), DP(26), THK(26), TID(26, 26), DID(26, 26), TO(26), DP(26), THK(26), THK(26), THK(26), TID(26, 26), DID(26, 26), COMMON NSTA, LAT, VAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, JMIN,P,PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, DELTA, T, AX, AY, AH, ANIN,F, PMAG, AT, BT, XH, YH, DIST1, TH1, FT1, TS, AZ, V, DP, THK, TID, DID, TINJ, DIDJ, TR, V1, DP, THK, TID1, DID1, V2, DP2, THK2, TID2, DID2, A, B, Y, C, DAP, BP, G, PT, KO, XMG, EPMG, EXMG COMMON/UNDM/HILO, CNST, PMRP, J, PMAG, PMRX, ZXMAG, KT, KSTA, VB, PPP, ISTS, KSITE, NL1, NL2, LATR, VATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INST, KSEC, TUD, NEAD, CMIN, TORS, COLORG, LATED, LORED, MODE, INST,		XEP. YEP.RAH. ASDX.ASDY.ASDZ.ASDT.MM.KOUT.XMAG.LI	
SUBROUTINE HYCOR DIMENSION NSTA(29,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), W(99), QSABE(99), KDATE(99), EL(2,99), DLY(2,99), MC(2,99), MAP(99), S(99), QSABE(99), KDATE(99), JHR(99), JMIN(99), PR(99), PRP(99), ANP(99), S(99), PRS(99), ANS(99), PRX(99), DY(99), DELTA(99), T(99), AX(99), AY(99), AH(99), CALX(99), TP(99), DX(99), AX(99), W(26), DP(26), THK (26), TIU(26,26), DIU(26,26), THL (99), FT1(99), TS(99), AX(99), V(26), DP(26), THK (26), TIU(26,26), DIU(26,26), TINJ(26), TS(99), AX(99), V(26), DP(26), THK (26), TIU(26,26), DIU(26,26), TINJ(26), TIU(26), DP(26), THK(26), DP(26), THK (26), TIU(26,26), DIU(26,26), C(4,4), DP(2,6), THK(2,6), TIU(26,26), TIU(26,26), A(4,4), B(4), Y(4), C(4,4), D(3,3), AP(3,3), BP(3), G(99), PT(99), KO(99), XXMG(99) DIMENSION EPMG(99), EXMG(99) COMMON NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DIST1, TH1, FT1, TS, AZ, V, DP, THK, TID, DID, TINJ, DIDJ, TR, V1, DP1, THK1, TID1, DID1, V2, DP2, THK2, TID2, DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, KT, KSTA, VB, PPP, ISTS, COMMON/UNDM/HILO, CNST, PWRP, ZPMAG, PWRX, ZXMAG, KT, KSTA, VB, PPP, ISTS,	•	KDEC, THR. NEAR, BMTN. DRCS, DO, DRC. I ATER YATER I DNI	
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), W(99), QSABE(99), KDATE(99), JHR(99), JMIN(99), PK(99), DT(99), AMP(99), S(99), PRS(99), AMS(99), PRX(99), AMX(99), RK(99), DT(99), CALP(99), CALS(99), CALX(99), TP(99), DX(99), AT(99), BT(99), XH(99), YH(99), DIST1(99), TH1(99), FT1(99), TS(99), AZ(99), V(26), DP(26), THK(26), TID(26,26), DID(26,26), DID(26,26), TID(26), DP2(26), THK2(26), TID2(26,26), TID2(26,26), DID(26,26), DID(26,26), C(4,4), D(3,3), AP(3,3), BP(3), G(99), PT(99), KO(99), XXMG(99) DIMENSION EPMG(99), EXMG(99) COMMON NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, H, QSABE, KDATE, JHR, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, DELTA, T, AX, AY, AH, ANIN, F, PMAG, AT, BT, XH, YH, DIST1, TH1, FT1, TS, AZ, Y, DP, THK, TID, DID, TINJ, DIDJ, TR, Y1, DP, THK1, TID1, DID1, Y2, DP2, THK2, TID2, DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EXMG	-	COMMON/UNDM/HILO, CNST, PWRP, ZPMAG, PWRX, ZXMAG, KT, KSTA, VB, PPP	-
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE(99), JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(99),AMS(99), PRX(99),DY(99),RK(991,DT(99),CALP(99),CALS(99),PRS(99),AMS(99), PPAG(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AZ(99),V(26),DP(26),THK(26),THX(26),TID(26,26),DID(26,26),TIN(26), DIDJ(26),TR(26),V1(26),DP1(26),THX(26),TID1(26,26),DID(26,26),DID(26,26), V2(26),DP2(26),THK2(26),TID2(26,26),DID2(26,26),A(4,4),B(4),Y(4), C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KO(99),XXMG(99) DIMENSION EPMG(99),EXMG(99) COMMON NSTA,LAT,YAT,LON,XON,EL,OLY,MDL,MSTA,H,QSABE,KDATE,JHR, JMIN,P,PRP,AMP,S,PRS,AMS,PRX,AMX,RK,DT,CALP,CALS,CALX,TP,DX,DY, DELTA,T,AX,AY,AH,ANIN,F,PMAG,AT,BT,XH,YH,DIST1,TH1,FT1,TS,AZ,V, DP,THK.TID.DID.TINJ.DIDJ.TR.V1.DP1.THK1.TID1.DID1.V2.DP2.THK2.		TID2,DID2, A, B, Y, C, D, AP, BP, G, PT, KO, XXMG, EPMG, EXI	
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99), XON(2,99), EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), H(99), QSABE(99), KDATE(99), JHR(99), JMIN(99), P(99), PRP(99), AMP(99), S(99), PRS(99), AMS(99), PRX(99), DY(99), DELTA(99), T(99), AX(99), AY(99), AH(99), CALX(99), TP(99), DX(99), AT(99), BT(99), XH(99), YH(99), DIST1(99), TH1(99), FT1(99), TS(99), AZ(99), V(26), DP(26), THK(26), TIU(26, 26), DIU(26, 26), TINJ(26), UDJ(26), TR(26), V1(26), DP1(26), THK1(26), TID1(26, 26), DID1(26, 26), V2(26), DP2(26), THK2(26), TID2(26, 26), DID2(26, 26), A(4,4), B(4), Y(4), C(4,4), D(3,3), AP(3,3), BP(3), G(99), PT(99), KO(99), XXMG(99) DIMENSION EPMG(99), EXMG(99) DIMENSION EPMG(99), EXMG(99) DIMENSION STA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, W, QSABE, KDATE, JHR, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, DT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRS, AMS, PRX, AMX, RK, PT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRX, AMS, PRX, AMX, RK, PT, CALP, CALS, CALX, TP, DX, DY, JMIN, P, PRP, AMP, S, PRX, AMX, PRX, AMX, PRX, PRX, PRX, PRX, PRX, PRX, PRX, PR	·	DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP1,THK1,TID1,D	
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE(99), EL(2,99),DLY(2,99),MDL(2,99),AMP(99),S(99),QSABE(99),KDATE(99), JHR(99),JMIN(99),PR(99),PR(99),AMP(99),S(99),PRS(99),AMS(99), PRX(99),DY(99),DELTA(99),T(99),AX(99),AY(99),AH(99),ANIN(99),F(99), DX(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AT(99),V(26),DP(26),THK(26),TIU(26,26),DIU(26,26),DIU(26,26),TINJ(26), V2(26),TR(26),THK2(26),TIO2(26,26),TID1(26,26),A(4,4),B(4),Y(4), V2(26),DP2(26),THK2(26),TIO2(26,26),DIU2(26,26),A(4,4),B(4),Y(4), C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KO(99),XXMG(99) DIMENSION EPMG(99),EXMG(99) COMMON NSTA,LAT,YAT,LON,XON,EL,DLY,MDL,MSTA,W,QSABE,KDATE,JHR,		JRIN,F,FRF,AMF, S,FRS,AMS,FRX,AMX,RK,DI,CALF,CA DELTA.T.AX.AY.AH.ANIN.E.PMAG.AT.BT.XH.YH.DISTI	
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE(99), JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(99),AMS(99), PRX(99),AMX(99),RK(991,DT(99),CALP(99),CALS(99),CALX(99),AMS(99), DX(99),DY(99),DELTA(99),T(99),AX(99),AY(99),AH(99),ANIN(99),F(99), PMAG(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AZ(99),V(26),DP(26),THK(26),TID(26,26),DID(26,26),TINJ(26), V2(26),DP2(26),THK2(26),DP1(26),THK1(26),TID1(26,26),DID1(26,26), C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KD(99),XXMG(99) DIMENSION EPMG(99),EXMG(99)	SUPTOUTINES	COMMON NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, H,	0
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE(99), JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(99),AMS(99), PRX(99),AMX(99),RK(991,DT(99),CALP(99),CALS(99),CALX(99),TP(99), DX(99),DY(99),DELTA(99),T(99),AX(99),AY(99),AH(99),ANIN(99),F(99), PMAG(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AZ(99),V(26),DP(26),THK(26),TID(26,26),DID(26,26),DID(26,26),TINJ(26), V2(26),DP2(26),THK2(26),TID2(26,26),DID2(26,26),A(4,4),B(4),Y(4), C(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KO(99),XXMG(99)	0	(99),EXMG(99)	649
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99), EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE(99), EL(2,99),JMIN(99),P(59),PRP(99),AMP(99),S(99),PRS(99),AMS(99), JHR(99),JMIN(99),RK(991,DT(99),CALP(99),CALS(99),CALX(99),TP(99), PRX(99),AMX(99),RK(99),T(99),AX(99),AY(99),AH(99),ANIN(99),F(99), DX(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),TH1(99),FT1(99), TS(99),AZ(99),V(26),DP(26),THK(26),TIU(26,26),DIU(26,26),TINJ(26), DIDJ(26),TR(26),V1(26),DP1(26),THK1(26),TID1(26,26),DID1(26,26),	M/Prog and all of the	2(26),DP2(26),THK2(26),TID2(26,26),DID2(26,26)(4,4),D(3,3),AP(3,3),BP(3),G(99),PT(99),KD(99)	
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99) DIMENSION NSTA(2,99),MDL(2,99),MSTA(99),W(99),QSABE(EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(9 PRX(99),AMX(99),RK(99),DT(99),CALP(99),CALS(99),CALS(99),CALS(99),AX(99),AY(99),AH(99) DX(99),AT(99),BT(99),XH(99),YH(99),DIST1(99),THI TS(20),AT(99),BT(99),XH(99),YH(99),DIST1(99),THI TS(20),AT(99),BT(99),XH(99),YH(99),DIST1(99),THI	This block is contained in the	DIDJ(26),TR(26),V1(26),DP1(26),THK1(26),TID1(26,26),DID1(26,26)	
SUBROUTINE HYCOR DIMENSION NSTA(2,99), LAT(2,99), YAT(2,99), LON(2,99) EL(2,99), DLY(2,99), MDL(2,99), MSTA(99), W(99), QSABE(EL(2,99), JMIN(99), P(99), PRP(99), AMP(99), S(99), PRS(9) PRX(99), AMX(99), RK(99), DT(99), CALP(99), CALS(99), AH(99) DX(99), DY(99), DELTA(99), T(99), AX(99), AY(99), AH(99)		TS (88)	
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99) EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),XDATE JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(99),AMS(99) PRX(99),AMX(99),RK(99),DT(99),CALP(99),CALS(99),CALX(99),TP		DX(99),DY(99),DELTA(99),T(99),AX(99),AY(99),AH(99)	
SUBROUTINE HYCOR DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99 EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE		JHR(99),JMIN(99),P(99),PRP(99),AMP(99),S(99),PRS(99),AMS(99)	
UPROUTINE HYCOR		DIMENSION NSTA(2,99),LAT(2,99),YAT(2,99),LON(2,99),XON(2,99) EL(2,99),DLY(2,99),MDL(2,99),MSTA(99),W(99),QSABE(99),KDATE	948
		UBROUTINE HYCOR	7

4 . A31=A(1,2)*A(2,3)-A(2,2)* 5 A32=A(2,1)*A(1,3)-A(1,1)* 6 A33=A(1,1)*A(2,2)-A(2,1)*	13=A(2,1)*A(3,2)-A(3 21=A(3,2)*A(1,3)-A(1 22=A(1,1)*A(3,3)-A(3 23=A(3,1)*A(1,2)-A(1	08 3C2 All=A(2,2)*A(3,3)-A(3,2)*A(2,0) Al2=A(3,1)*A(2,3)-A(2,1)*A(3,0)	06 GO TO	5 ASDT=AB	03 ASDY=ABS(A22/DETA 04 ASDY=1-0	02 ASDX=A	00 MM=3	99	98 Y(3)=0.0	6 210 Y(1)=(B(1)*A11+B(2)*A21+B(4)*A41	95 IF(ETA .LT. 0.00000001) GO TO 40	94 ETA=ABS(DETA)	76	91 A42=A(2,1)*A(1,4)-A(1,	90 A41=A(1,2)*A(2,4)-A(2,2)*A($\begin{array}{cccccccccccccccccccccccccccccccccccc$				87 A21=A(4,2)*A(4,1)-	86 A14=A(2,1)*A(4,2)-A(4,1)*A(2	A12=A(4,1)+A(2,4)-A(2,1)+A(4,4)	84 200 All=A(2,2)+A(4,4)-A(4,2)+	82 ASUI = AUS(C(4,4)/DE1	1 ASDZ=ABS(C(3,3)	80 ASDY=ABS(C(2,2)/DET	79 ASDX=ABS(C(1,1)/DET	78 KOUT=	77 00 CD	75 Y(1)=(50 I=1,4
		Routine to solve 3x3 sujetom ct	In the hornal equations	of coefficients of the unknowns	diagonal of the inverse matrix	Calculate elements of the principal	Flag "ZFIX" solution		Calculate correction vector		COLITICIALLY OF MULMONING	Evaluate and test determinant of	The state of the s		Marie	adjustment of the hugerenter	of equations in a "ZFIX"	Routine to solve 3x3 system	į		•	•		THE NOTHING TO SERVE	alagoral of the ten "unknown" coeff	Carried of the meeter matrix of	Culturate elements of the principal		Flag 11-4 free solution	correction rector	salve to comments of the

1048		.444	4444	1036 1037 1038	שו שו שו שו שו	M N N N N	1020 1021 1023 1024	
927-929-07	subscutine to compute relocity and atimuth of approach of plane wave fitted to P-wave arrivals by least squares	OUT=5 ETURN ND		(4) = (4) =	17 (ET)	DX= AB DY = AB DZ = AB DT = 1 • (N=3 OUT=3 (1)=(B(1)*A11+B(2)*A21+B(3)*/ (2)=(B(1)*A12+B(2)*A22+B(3)*/ (3)=(B(1)*A13+B(2)*A23+B(3)*/ (4)=0.0	DETA=A(1,1)*A11+A(2,1)*A21+A(3,1)*A31 ETA=ABS(DETA) TECETA_IT_ 0_00000001) GD TO 400
This block is contained in the		Flag " no selution", which salls YEKAZ	diagonal of the inverse matrix of mormal equation coefficients	Calculate correction vector Flag" ZFIX-TFIX" solution	Routine to solve 2x2 system of normal equations in a ZFIX-TFIX adjustment	calculate elements of the princepal diagonal of the inverse matrix of normal equation coefficients	Flag "TFIX" solution Calculate correction vector	traluate and test determinant of coefficients of anknowns

108110811081	1100000000	1068 1069 1070 1071 1072	10000	0000000	
2 2 2 2 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2	8887777774	070	76666	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	50 52 53
26 N=NE AR M=MFAR K=KALX GAM=((TP(K)-TP(N))*DIST1(M))/((TP(M)-TP(N))*DIST1(K)) DENOM=COS(TH1(K))-GAM*COS(TH1(M)) ADN=ABS(DENOM) IF(ADN .LT.0.0000001) DENDM=0.0000001	ALTMX=-99.99 KLT=KOLT-1 DO 25 J=2,KLT I=KO(J) 22 ALT=DIST1(I)*SIN(TH1(I)-TH1(MFAR)) ABALT=ABS(ALT) IF(ALTMX-ABALT)23,25,25 23 ALTMX=ABALT KALX=I CONTINUE	IF(ABDIV .LT. 0.000001) DIV=0.000001 13 TH1(I)=ATAN(XNLM/DIV) 14 IF(DIV .LT.: 0.0) TH1(I)=TH1(I)+3.14159 15 IF(TH1(I) .LT. 0.0) TH1(I)=TH1(I)+6.28318 20 CONTINUE KALX=1	EL XRE	(INST.EQ. 8) II=0 (MODE .EQ. 2 .AND. INST .NE. 8) GO TO 26 LAT=(60.0*LAT(2,NEAR)+YAT(2,NEAR))/(060. =PPP*COS(ZHLAT) 7 I=1,KREC (I)=(60.0*(LGN(2,I)-LORED)+XGN(2,I))*PH (I)=(60.0*(LAT(2,I)-LARED)+YAT(2,I))*QQ NTINUE	ENSION EPM MON NSTA, L MON NSTA, L MON PRP AM TA, T, AX, AY THK, TID, DI 2, DID2, A, B 2, DID2, A, B MON/UNDM/H MON/UNDM/H TE, NL1, NEAR , YEP, RAH, A , KAZ, DETA, KAZ, DETA,
		line joining the 1st and the KOLT'th stations	Determine station on KOLT list that lies tarthest from the		the suproudines

27 PFI=ATAN((SIN(TH1(K))-GAN*SIN(TH1(M)))/DENON) 28 IF(TH1(M)-PFI)29.30.30	calculate apparent velocity and
9 PF1=PF1-3.14159	The Late of the La
GO TO 28	wave controlly one of Now in
F(TH1(M)-PFI	and "farthest off line" stations
PFI=	
1	
VA=	
KAZ*I	Set switches and sum registers
•	
34 00 30 I-1	
FO NEAST GO TO	
\=\TO(1\-TD(NEAD\)-\D10T1\1*CTN(TU)	Compute residuals.
IF (KREC .LT	torminate admitstance t lack
ABS(Y2)	
IF (YZAB .LT	CHANGE IN AZIMUTA CO.001 Tay OF Iterations >18
3 I=1, KREC	
IT(I = EQ. NEAR) GU TU 43	•
PTII)=-(DICI)+COCTHIIIPTI)/(VA+VA)	
	•
ATII	
=0.0	-
45 I=1, KREC	
(W(I) .LT. 0.1 .D	
2=AT22+AT(1)+ 2=AT22+AT(1)+	
=8T1+AT(I)*F	· Coloreta management
=812+	calculate normal equation
INUE	coefficients
1=AT12	
T=AT11*AT	Evaluate and test determinant
AEAT=ABS(DEAT)	

1151 52 CC 1152 DC 1153 IF 1154 53 TH 1156 54 CC 1156 RE	50 51 51	136	3 46 Y
CONTINUE DD 54 I=1,KREC IF(I .EQ. NEAR) GD TO 54 TH1(I)=TH1(I)*57.29587 CONTINUE RETURN END	49 I=1,KREC 49 I=1,KREC H(I) .LT. 0.1 .OR. I .EQ. NEAR) KF+1 = AAF+ABS(FT1(I)) ATINUE KF-2)50,50,51 = 0.0 TO 52 = FLOAT(KF) = AAF/XKF	#VA+Y1 I=PFI+Y2 #KI+1	1=(BT1*AT22-BT2*AT12)/DEAT
	60 10 49		
Convert azimuths to degrees	compute mean deviation	Adjust relocity and azimuth	Compute adjustments to apparent

1179 IF(AMP(J). 1180 IF(CALP(J)) 1181 30 ARGP=AMP(J) 1182 IF(ARGP.LT	76 77 11	2 MC=0 3 MP=0 5 SXMAG= 5 SPMAG=	9 10 0 15 20	7 6 EF	1162 CUMMUN 1KSITE, 2KREC, I 3XEP, YE 4LHY, KA 1163 REAL L		1161 COMMON	DIMENSION (1159	
LT. 0.01) GO 40,40,30 *CNST*PRP(J)/ 0.000001) G 10(ARGP*RAD2	KREC (J)*DELTA(J)*	0.0 0.0	=-HILO*AMP(J) (J))15,20,20 =-HILO*AMX(J)		COMMUNIONUMINICU, CNST, PMRP, 2 PMAG, PMRX, 2XMAG, NT, KSTA, YB, PPP, 11373, KSTE, NL1, NL2, LATR, YATTR, LOTR, XONTR, ZNOT, LARED, LORED, MODE, INST, KSITE, NL1, NEAR, PMIN, ORGS, QQ, ORG, LATEP, YATEP, LONEP, XONEP, Z, KZSW, KREC, IHR, NEAR, PSA, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LOSW, PFI, VA, AAF, XEP, YEP, RAH, ASDX, ASDY, ASDZ, ASDT, MM, KOUT, XMAG, LOSW, PFI, VA, AAF, LHY, KAZ, DETA, MFAR, PFAR, KALX, KOLT, SMP, XNEAR, XFAR, ZTR, ZRES, PPMG REAL LAT, LON, LATR, LOTR, LARED, LORED, LATEP, LONEP	1JMIN,P,PRP,AM9,S,PRS,AMS,PRX,AMX,RK,DT,CALP,CALS,CALX,IP,DX,DY, 2DELTA,T,AX,AY,AH,ANIN,F,PMAG,AT,BT,XH,YH,DIST1,TH1,FT1,TS,AZ,V, 3DP,THK,TID,DID,TINJ,DIDJ,TR,V1,DP1,THK1,TID1,DID1,V2,DP2,THK2, 4TID2,DID2,A,B,Y,C,D,AP,BP,G,PT,KD,XXMG,EPMG,EXMG	DP2(26), VI(26), DPI(26), HKI(26), 11D1(26,26), DID1(26,26), DID1(26,26), DID2(26,26), A(4,4), B(4), Y(4), D(3,3), AP(3,3), BP(3), G(99), PT(99), KO(99), XXMG(99), XXMG(99), DID1(DN EPMG(99), EXMG(99), EXMG(99), EXMG(99), BY A, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, W, QSABE, KDATE, JHR, NSTA, LAT, YAT, LON, XON, EL, DLY, MDL, MSTA, W, QSABE, KDATE, JHR,	NSTA(2) LY(2,9) IN(99), X(99), DE T(99),V(Subroutine to compute magnitudes from Private and X-wave amplitude and period data UBROUTINE MAGNIO
P magnitude calculation for stu J	calculate hypocentral distance (squared	Set counters and sum registers	Remore "-" flags from low level amplitude entries	Initialize tegisters			1his block is contained in the M/Prog and in all of the subjustmes		

2	IF(XMAG .LT9.00) GO TO 150 DO 145 J=1,KREC IF(XXMG(J) .LT9.00) GO TO 145 EXMG(J)=XXMG(J)-XMAG CONTINUE	F(PPMG .LT9.00) GO TO 130 O 125 J=1,KREC F(PMAG(J) .LT9.00) GO TO 125 PMG(J)=PMAG(J)-PPMG ONTINUE	(MC .EQ. 0) GD TO 110 C=MC AG=SXMAG/SHC TO 115 AG=-9.99	AG/XMP	1) = ALDG 100 100 100 1) = -9 9	LX(J))90,90,45 X(J) .LT. 0.01) GD TD 90 AHX(J)*CNST*PRX(J)/CALX(J) GX .LT. 0.0000C1) GD TO 90	PMAG(J)=-9.99
•	Compute X-nuignitude vesiduals	Compute Pinagnitude residuals	Compute mean X magnitude	Compute mean P may nitude		X magnitude calculation for stn J	

49.88

50 -0.0018 0.0454 -0.0 50 -0.0018 0.0454 -0.0 50 -0.0018 0.0454 -0.0 50 -0.0018 0.0454 -0.0 50 -0.0018 0.0454 -0.0 50 -0.0073 -0.005 -0.005 AV RESID= -0.00 PMAG SDZ SDT KSTA XMAG II 0.3 0.02 11 0.49 5 XMAG RSXMG RMK W G -9.99 -9.99 1.00 1.0 0.55 0.05 1.00 1.0 0.55 0.05 1.00 1.0 0.50 0.31 1.00 1.0 0.33 -0.16 1.00 1.0 0.33 -0.16 1.00 1.0 0.09 -0.41 1.00 1.0 0.09 -0.58 1.00 1.0 0.09 -0.58 1.00 1.0 0.00 1.00 1.0 0.00 -0.59 1.00 1.0 0.00 1.00 1.0 0.00 1.00 1.0 0.00 1.00 1	AV RESID= -0.00 PM SDZ SDT KSTA XMAG I 0.62 0.13 1.00 1 0.33 -0.16 1.00 1 0.33 -0.16 1.00 1 0.33 -0.16 1.00 1 0.33 -0.16 1.00 1 0.33 -0.16 1.00 1 0.33 -0.16 1.00 1 0.99 -9.99 -9.99 1.00 1 1.00 1 0.00 9 -0.58 1.00 1 1.00 1 0.00 9 -0.58 1.00 1 1.00
-0.0018	31 51:1106 0.1385 0.0050 -0.0018 0.0454 -0.0021 11 0.030 11.000 151 -0.097 0.0355 0.2754 11.0000 -0.0000 -0.0005 -0.0022 0.0005 11 38.3488 0.1130 -0.0093 -0.0073 -0.0851 0.0020 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.030 11.000 11 0.031 0)
\$1.1106	1 0.030 11.000 1 0.035 0.0050 -0.0018 0.0454 -0.0021 1 0.030 11.000 1 0.035 0.2754 11.0000 -0.0000 -0.0005 -0.0022 0.0005 38.3488 0.1130 -0.0093 -0.0073 -0.0851 0.0020 0 3 1 0)
0.11385 0.0050 -0.0018 0.0454 -0.0 0.0351 11.000 -0.0000 -0.0005 -0.0022 0.01130 -0.0093 -0.0073 -0.0851 0.0 0.05 0.1130 -0.0093 -0.0073 -0.0851 0.0 0.05 0.1130 -0.0093 -0.0073 -0.0851 0.0 0.05 0.11 0.1 0.3 0.02 11 0.49 5 0.05 0.1 0.1 0.3 0.02 11 0.49 5 0.05 0.1 0.1 0.3 0.02 11 0.49 5 0.05 0.10 0.55 0.05 11.00 1.0 0.05 1.05 0.40 0.80 0.31 1.00 1.0 0.05 1.05 0.40 0.33 -0.16 1.00 1.0 0.05 1.05 0.40 0.33 -0.41 1.00 1.0 0.05 1.05 0.40 0.33 -0.41 1.00 1.0 0.05 0.42 -0.09 -0.58 11.00 1.0 0.06 0.23 -0.42 -0.09 -0.58 11.00 1.0 0.01 -9.99 -9.99 -9.99 11.00 1.0 0.04 -9.99 -9.99 -9.99 11.00 1.0	0.1385 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0021 0.0055 -0.0022 0.00021 0.0355 0.2754 11.0000 -0.0000 -0.0005 -0.0022 0.00020 0.0355 0.2754 11.0000 -0.0073 -0.0851 0.0020 -0.0020 -0.0055 0.0020 -0.0073 -0.0851 0.0020 -0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.0020 -0.0055 0.005 0.11 0.00 1.000 0.055 0.005 0.12 0.005 0.00
385 0.0050 -0.0018 0.0454 -0.0 0.0050 -0.0018 0.0454 -0.0 0.0050 -0.0018 0.0454 -0.0 0.0754 11.0000 -0.0000 -0.0005 -0.0022 0.2754 11.0000 -0.0000 -0.00851 0.0 130 -0.0093 -0.0073 -0.0851 0.0 0-0.0093 -0.0073 -0.0851 0.0 05 0.00	385 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.005 -0.0022 0.00021 0.000 -0.0000 -0.0005 -0.0022 0.00020 0.2754 11.0000 -0.0000 -0.0005 -0.0022 0.00020 0.2754 11.0000 -0.0001 -0.0020 -0.0023 -0.0023 -0.0020 0.000 -0.0093 -0.0073 -0.0051 0.0020 0.000 -0.0093 -0.00951 0.0020 0.000 -0.000 AV RESID= -0.00 PMAG= 0.65 0.000 AV RESID= -0.00 PMAG= 0.65 0.01 0.3 0.02 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.49 5 11 0.00 1.00 0.55 0.05 1.00 1.00 0.55 0.05 1.00 1.00 0.55 0.06 1.00 1.00 0.05 0.44 1.15 0.66 1.00 1.00 0.05 0.44 1.15 0.66 1.00 1.00 0.05 0.44 1.15 0.66 1.00 1.00 0.05 0.40 0.33 -0.16 1.00 1.00 0.28 -0.37 0.09 -0.58 1.00 1.00 1.00 0.28 -0.37 0.09 -0.58 1.00 1.00 1.00 0.29 -9.99 -9.99 -9.99 1.00 1.00
0.0050 -0.0018 0.0454 -0.0 0.0050 -0.0018 0.0454 -0.0 0.0050 -0.0018 0.0454 -0.0 0.005 -0.0018 0.0454 -0.0 -0.005 -0.005 -0.002 -0.005 -0.005 -0.002 -0.005 -0.005 -0.002 -0.0093 -0.0073 -0.0851 0.0 0.0093 -0.0073 -0.0851 0.0 0.0093 -0.0073 -0.0851 0.0 0.0093 -0.0073 -0.0851 0.0 0.0093 -0.0073 -0.0851 0.0 0.00944 0.309 -0.13 1.00 1.0 0.44 1.15 0.66 1.00 1.0 0.44 1.15 0.65 1.00 1.0 0.44 1.15 0.66 1.00 1.0 0.44 1.10 1.0 0.44 1.15 0.65 1.00 1.0 0.44 1.10 1.0 0.44 1.10 1.0 0.44 1.10 1.0 0.44 1.00 1.0 0.44 1.00 1.0 0.45 1.00 1.0 0.46 1.00 1.0 0.47 -0.09 -0.58 1.00 1.0	0.0050 -0.0018 0.0454 -0.0021 0.0050 -0.0018 0.0454 -0.0021 0.0454 -0.0021 0.0454 -0.0021 0.0021 0.0020 -0.0000 -0.0005 -0.0022 0.00020 -0.0093 -0.0073 -0.0851 0.0020 -0.0093 -0.0073 -0.0851 0.0020 0.00 AV RESID= -0.00 PMAG= 0.65 SDY SDZ SDT KSTA XHAG II KREC 0.1 0.3 0.02 11 0.49 5 11 SPMG XMAG RSXMG RNK W G 9.99 -9.99 1.00 1.00 0.14 0.62 0.13 1.00 1.00 0.14 0.62 0.13 1.00 1.00 0.14 0.62 0.13 1.00 1.00 0.44 1.15 0.66 1.00 1.00 0.44 1.15 0.66 1.00 1.00 0.40 0.33 -0.16 1.00 1.00 0.42 -0.09 -0.58 1.00 1.00 9.99 -9.99 -9.99 1.00 1.00
-0.0018	-0.0018
0.0454 -0.0 0.0454 -0.0 0.0454 -0.0 0.0454 -0.0 0.0851 0.0 -0.0851 0.0 1.00 PMAG II 11 0.49 5 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0	0.0454 -0.0021 0.0454 -0.0021 0.0454 -0.0021 0.0020 -0.0851 0.0020 -0.0851 0.0020 -0.0851 0.0020 11 0.49 5 11 RNK W G 1.00 1.00 1.00 1.00
0.0454 -0.0 0.0454 -0.0 0.0851 0.0 0.0851 0.0 0.0851 0.0 0.095 -0.0022 0.0851 0.0 0.095 -0.0022 0.0851 0.0 0.095 -0.0022 0.095 -0.0022 0.095 -0.0022 0.00 PMAG II 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0454 -0.0021 0.0454 -0.0022 0.00021 0.0851 0.0020 0.0851 0.0020 0.0851 0.0020 0.0851 0.0020 0.0851 0.0020 0.095 -0.0022 0.0851 0.0020 0.0851 0.0020 0.0851 0.0020 0.095 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0
PMA 0022 001111111111111111111111111111111	-0.0021 -0.0021 -0.0020 0.0020 0.0020 0.0020 0.0020 11 KREC 5 11 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	1 C . 65